![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Схема расчета рекуператора
Цель расчета рекуператора состоит в определении величины поверхности теплообмена F, которая является исходным параметром при проектировании. Массовые расходы теплоносителей и температуры В расчете рекуператора используются два уравнения: теплового баланса (5.4) и теплопередачи (6.2). Из уравнения (6.4) находят неизвестную температуру дыма на выходе из рекуператора
Из уравнения (6.2) определяют искомую величину поверхности теплообмена
Коэффициент теплопередачи " k" находят по формуле (6.1). В металлических рекуператорах внутреннее тепловое сопротивление стенки S/l пренебрежимо мало по сравнению с величинами – 1/aд и 1/aв, поэтому формула (6.1) упрощается
Формулы для вычисления коэффициентов теплоотдачи aд и aв приведены в учебном пособии [3] из списка рекомендуемой литературы.
5.2 Промышленные рекуператоры. Типовые конструкции рекуператоров металлургических печей: керамический рекуператор, металлический петлевой рекуператор, блочный рекуператор и др.
Конструкции рекуператоров разнообразны. В качестве примера рассмотрим рекуператоры трех конструкций: Петлевой трубчатый рекуператор перекрестного тока (рис. 6.4) выполняется из металлических труб Æ 57/50 мм, устанавливается в дымовом канале. Достоинством его является свободное удлинение труб при разогреве рекуператора, так как трубы находятся в подвешенном состоянии и не испытывают термических напряжений. Воздух входит в один из двух коллекторов, затем движется внутри труб по петлевой траектории и выходит из второго коллектора. Поток дыма проходит вдоль дымового канала между трубами. Эти рекуператоры широко применяются на нагревательных печах для подогрева воздуха и газообразного топлива. Струйный радиационный рекуператор (рис. 6.5) имеет плоскую поверхность теплообмена в виде металлического листа.
Рис. 6.4 – Петлевой трубчатый рекуператор
Рис. 6.5 – Схема струйного радиационного рекуператора
Струйный рекуператор устанавливается на дымовой канал сверху. Дым проходит по каналу под рекуператором и передает теплоту на поверхность теплообмена в основном излучением, так как скорость движения дыма в канале мала (2-3 м/с), а его температура довольно высока – обычно более 1000 °С. Поэтому конвективный тепловой поток от дыма к поверхности теплообмена значительно меньше, чем лучистый. Воздушные струи истекают из мелких отверстий коллектора на поверхность теплообмена, при этом конвективная теплоотдача от поверхности к воздуху происходит более интенсивно, чем при движении воздуха вдоль поверхности теплообмена. Керамический трубчатый рекуператор (рис. 5.6) перекрестного тока служит для подогрева воздуха до 800-850 °С. Дымовые газы проходят обычно внутри труб, воздушный поток омывает поверхность труб снаружи. Трубы выполняются из шамота, либо из смеси шамота с карборундом (SiC). Как отмечалось выше, керамические рекуператоры имеют низкую газоплотность (из-за большого количества недостаточно плотных соединений труб между собой) и низкий коэффициент теплопередачи k = 5-10 Вт/(м2× К). В связи с этим для высокотемпературного подогрева воздуха и газообразного топлива целесообразно применять регенераторы. Рис. 6.6 – Керамический трубчатый рекуператор
|