![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
ФормулировкиСтр 1 из 5Следующая ⇒
Пусть случайная величина
где Если
В частности, случайная величина с конечной дисперсией отклоняется от среднего больше, чем на - Теорема Бернулли. Пусть m – число наступлений события А в k независимых (попарно) испытаниях, и р есть вероятность наступления события А в каждом из испытаний. Тогда при любом Билет 21. Пусть интересующая нас случайная величина Х принимает в выборке значение х 1 п 1 раз, х 2 – п 2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х 1, х 2, …, хк называют вариантами, а п 1, п 2, …, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационным рядом, а перечень вариант и соответствующих им частот или относительных частот – стати-стическим рядом:
Пример. При проведении 20 серий из 10 бросков игральной кости число выпадений шести очков оказалось равным 1, 1, 4, 0, 1, 2, 1, 2, 2, 0, 5, 3, 3, 1, 0, 2, 2, 3, 4, 1.Составим вариационный ряд: 0, 1, 2, 3, 4, 5. Статистический ряд для абсолютных и относительных частот имеет вид:
Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i -й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом:
|