![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
и окружающей его замкнутой серой оболочкой ⇐ ПредыдущаяСтр 5 из 5
Теоретические положения по расчету радиационного теплообмена между излучающим и поглощающим газом и окружающей его замкнутой серой оболочкой подробно изложены в литературе [1-3]. В инженерных расчетах лученепрозрачный (излучающий и поглощающий излучение) газ считают серым телом, а его объемное излучение заменяют излучением оболочки, в которую заключен газ. Поэтому плотность потока собственного излучения газа рассчитывают по формуле:
где Расчет радиационного теплообмена между серым газом и окружающей его замкнутой серой оболочкой выполняют по формуле Нуссельта:
где
где Степень черноты газа зависит от его состава, температуры и объема, который занимает газ. Для продуктов сгорания энергетических топлив степень черноты газа рассчитывается по формуле:
где
где
где Поправочный коэффициент В инженерных расчетах лучистый тепловой поток от газа к стенке иногда удобно представить в виде закона теплоотдачи Ньютона:
где 99 Коэффициент теплоотдачи излучением рассчитывают по формуле:
где 102Для теплового расчета рекуперативного теплообменника используют два основных уравнения – уравнение теплового баланса и уравнение теплопередачи. Без учета тепловых потерь в теплообменном аппарате уравнение теплового баланса имеет вид:
где а) для однофазных теплоносителей
б) при изменении агрегатного состояния горячего теплоносителя (горячий теплоноситель – влажный насыщенный водяной пар)
где G1 и G2 – массовые расходы горячего и холодного теплоносителей, кг/с; cp1 и cp2 – удельные массовые изобарные теплоемкости горячего и холодного теплоносителей, Дж/(кг× К); 103Для теплового расчета рекуперативного теплообменника используют два основных уравнения – уравнение теплового баланса и уравнение теплопередачи. Уравнение теплопередачи в рекуперативном теплообменном аппарате имеет вид:
где k – коэффициент теплопередачи, Вт/(м2× К); Коэффициент теплопередачи рассчитывают по формулам теплопередачи для плоской стенки, поскольку толщина стен у трубок теплообменников мала [1, 2]:
где 104Температуры теплоносителей вдоль поверхности теплообмена изменяются по экспоненциальному закону. При этом из соотношений (111) следует обратно пропорциональная зависимость между водяными эквивалентами и изменениями температуры вдоль поверхности теплообмена (рис. 9): если если При противоточной схеме движения теплоносителей (рис. 7.9) выпуклость кривых изменения температуры теплоносителей направлена в сторону большого водяного эквивалента, т.е. в сторону теплоносителя с меньшим изменением температуры. Если греющим теплоносителем является влажный или сухой насыщенный водяной пар, то в процессе теплопередачи его температура не изменяется и равна температуре насыщения при данном давлении:
105При расчете коэффициентов теплоотдачи при вынужденном движении в трубах и каналах принять поправку на начальный участок гидродинамической стабилизации потока
где Среднюю разность температур для прямоточной и противоточной схем движения теплоносителей рассчитывают по формулам:
или
где DTmax и DTmin – максимальная и минимальная разности температур теплоносителей (см. рис.9), °С; DTа – среднеарифметическая разность температур, °С; DTл – среднелогарифмическая разность температур, °С. Для расчета средней разности температур при сложном движении теплоносителей строят температурный график
|