Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Осевой, полярный и центробежный моменты инерции фигуры
Осевой, полярный и центробежный моменты инерции фигуры сопромат Осевой момент инерции фигуры - этоинтеграл произведений элементарных площадей на квадраты их расстояний до рассматриваемой оси. Формулы осевого момента инерции произвольной фигуры (см. рис. 4.1) относительно осей x и y: Полярный момент инерции фигуры относительно данной точки (полюса) - это интеграл произведений элементарных площадей на квадраты их расстояний до полюса: Если через полюс проведена система взаимно перпендикулярных осей x и y, то , и формула полярного момента инерции равна сумме осевых моментов инерции относительно осей x и y: Из формул осевых и полярного моментов инерции видно: значения осевых и полярного моментов инерции всегда положительны, так как координаты и расстояние возведены в квадрат. Центробежный момент инерции фигуры - этоинтеграл произведений элементарных площадей на их расстояния до осей x и y: Моменты инерции измеряются в единицах длины в четвертой степени (как правило, см4). Понятие момента инерции поперечного сечения ввел в 1834 г. французский ученый Н. Перси.
|