Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Неточный






Значимость уравнения множественной регрессии в целом может оцениваться не только с помощью F-критерия Фишера, но также и с применением дисперсионного анализа.

Пример. Предположим, что модель урожайности пшеницы y (ц/га) от количества внесенных минеральных удобрений на 1га x1 и осадков x2 (мм) характеризуется следующим уравнением:

При этом Результаты дисперсионного анализа оказываются следующими:

 

 

При расчете частных F-критериев также применяется дисперсионный анализ.

Пример. Применим частный F-критерий для оценки значимости коэффициентов регрессии в уравнении множественной регрессии, описывающей зависимость объема продукции y от затрат труда x1 и технической оснащенности производства x2:

В рассматриваемом примере

Вычисления аналогично.

 

 

 

 

 

В таблице приведены три значения F-критерия. В первой строке указан общий F-критерий. Он составил 19, 3 и характеризует значимость двухфакторного уравнения регрессии в целом. Вторая величина F=22, 0 характеризует значимость парной регрессии при условии, что остаточная дисперсия совпадает с величиной остаточной дисперсии для множественной регрессии. Третье значение F=16, 5 – это частный F-критерий, оценивающий значимость дополнительного включения в модель фактора после введения в нее фактора

Эта таблица отличается от таблиц результатов дисперсионного анализа, рассматриваемых ранее. В ней источник вариации «регрессия» раскладывается на две составляющие:

1) обусловленная влиянием фактора x1;

2) обусловленная дополнительным включением в регрессионную модель фактора x2.

Чтобы получить частный F-критерий для фактора x1 необходимо построить другую таблицу.

 

11 Концепция F – критерия Фишера

С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам.

Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

где n - число наблюдений;
m - число параметров при факторе х.

F табличный - это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.

Уровень значимости а - вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0, 05 или 0, 01.

Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал