Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Многомерная модель данных
Многомерные системы позволяют оперативно обрабатывать информацию для проведения анализа и принятия решения. B развитии концепций ИС можно выделить следующие два направления: · системы оперативной (транзакционной) обработки; · системы аналитической обработки (системы поддержки принятия решений). Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. основные понятия: агрегируемость, историчность и прогнозируемость данных. Агрегируемостъ данных означает рассмотрение информации на различных уровнях ее обобщения. B информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь-оператор, управляющий, руководитель. Историчностъ данных предполагает обеспечение высокого уровня статичности (неизменности) собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени. Статичность данных позволяет использовать при их обработке специализированные методы загрузки, хранения, индексации и выборки. Временная привязка данных необходима для частого выполнения запросов, имеющих значения времени и даты в составе выборки. Необходимость упорядочения данных по времени в процессе обработки и представления данных пользователю накладывает требования на механизмы хранения и доступа к информации. Так, для уменьшения времени обработки запросов желательно, чтобы данные всегда были отсортированы в том порядке, в котором они наиболее часто запрашиваются. Прогнозируемостъ данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам. Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования дынными. По сравнению с реляционной моделью многомерная, организация данных обладает более высокий наглядностью и информативностъю. Для иллюстрации на рис.8 приведены реляционное (а) и многомерное (б) представления одних и тех же данных об объемах продаж автомобилей. Рис.8. Реляционные и многомерное представление данных Если речь идет о многомерной модели с мерностью больше двух, то не обязательно визуально информация представляется в виде многомерных объектов (трех-, четырех- и более мерных гиперкубов). Пользователю и в этих случаях более удобно иметь дело с двухмерными таблицами или графиками. Данные при этом представляют собой «вырезки» (точнее, «срезы») из многомерного хранилища данных, выполненные с разной степенью детализации. Разница между реляционными и многомерными моделями:
Рассмотрим основные понятия многомерных моделей данных, к числу которых относятся измерение и ячейка. Измерение (Dimension) - это множество однотипных данных, образующих одну из граней гиперкуба. Примерами наиболее часто используемых временных измерений являются Дни, Месяцы, Кварталы и Годы. В качестве географических измерений широко употребляются Города, Районы, Регионы и Страны. B многомерной модели данных измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба. Ячейка (Се11) или показатель - это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, обычно она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронных таблиц, вычисляются по заранее заданным формулам). B примере на рис.8, б каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения (Месяц продаж) и модели автомобиля. Еда практике зачастую требуется большее количество измерений. Пример трехмерной модели данных приведен на рис.9. Рис.9. Пример трехмерной модели B существующих МСУБД используются два основных варианта (схемы) организации данных: гиперкубическая и поликубическая. B полукубической схеме предполагается, что в БД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Оrас1е Express Server. B случае гиперкубической схемы предполагается, что все показатели определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов БД все они имеют одинаковую размерность и совпадающие измерения. Очевидно, в некоторых случаях информация в БД может быть избыточной (если требовать обязательное заполнение ячеек). B случае многомерной модели данных применяется ряд специальных операций, к которым относятся: формирование «среза», «вращение», агрегация и детализация. «Срез» (S1ice) представляет собой подмножество гиперкуба, полученное в результате фиксации одного или нескольких измерений. Формирование «срезов» выполняется для ограничения используемых пользователем значений, так как все значения гиперкуба практически никогда одновременно не используются. Например, если ограничить значения измерения Модель автомобиля в гиперкубе (рис.9) маркой «Жигули», то получится двухмерная таблица продаж этой марки автомобиля различными менеджерами по годам. Операция «вращение» (Rotate) применяется при двухмерном представлении данных. Суть ее заключается в изменении порядка измерений при визуальном представлении данных. Так, «вращение» двухмерной таблицы, показанной на рис.86, приведет к изменению ее вида таким образом, что по оси X будет марка автомобиля, а по оси Y - время. Операцию «вращение» можно обобщить и на многомерный случай, если под ней понимать процедуру изменения порядка следования измерений. B простейшем случае, например, это может быть взаимная перестановка двух произвольных измерений. Операции «агрегация» (Dri11 Up) и «детализация» (Dri11 Down) означают соответственно переход к более общему и к более детальному представлению информации пользователю из гиперкуба. Для иллюстрации смысла операции «агрегация» предположим, что у нас имеется гиперкуб, в котором помимо измерений гиперкуба, приведенного на рис.9, имеются еще измерения: Подразделение, Регион, Фирма, Страна. Заметим, что в этом случае в гиперкубе существует иерархия (снизу вверх) отношений между измерениями: Менеджер, Подразделение, Регион, Фирма, Страна. Пусть в описанном гиперкубе определено, насколько успешно в 1995 году менеджер Петров продавал автомобили «Жигули» и «Волга». Тогда, поднимаясь на уровень выше по иерархии, с помощью операции «агрегация» можно выяснить, как выглядит соотношение продаж этих же моделей на уровне подразделения, где работает Петров. Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем. При организации обработки аналогичных данных на основе реляционной модели происходит нелинейный рост трудоемкости операций в зависимости от размерности БД и существенное увеличение затрат оперативной памяти на индексацию. Недостатком многомерной модели данных является ее громоздкость для простейших задач обычной оперативной обработки информации.
|