Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принципы и подходы к построению математических моделей.






Математическое моделирование многие считают скорее искусством, чем стройной и законченной теорией. Здесь очень велика роль опыта, интуиции и других интеллектуальных качеств человека. Поэтому невозможно написать достаточно формализованную инструкцию, определяющую, как должна строиться модель той или иной системы. Тем не менее отсутствие точных правил не мешает опытным специалистам строить удачные модели. К настоящему времени уже накоплен значительный опыт, дающий основание сформулировать некоторые принципы и подходы к построению моделей. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Многие ошибки и неудачи в практике моделирования являются прямым следствием нарушения этой методологии.

Принципы определяют те общие требования, которым долж­на удовлетворять правильно построенная модель. Рассмотрим эти принципы.

Адекватность. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организации, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна.

2. Соответствие модели решаемой задаче. Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности.

3. Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототипа—в этом смысл моделирования. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей.

4. Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все скольконибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:

• изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением. Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием. Например, все типы ЭВМ в модели гетерогенных сетей можно объединить в четыре типа - ПЭВМ, рабочие станции, большие ЭВМ, кластерные ЭВМ;

• изменение природы переменных параметров. Переменные параметры рассматриваются в качестве постоянных, дискретные — в качестве непрерывных и т.д. Так, условия распространения радиоволн в модели радиоканала для простоты можно принять постоянными;

• изменение функциональной зависимости между переменными. Нелинейная зависимость заменяется обычно линейной, дискретная функция распределения вероятностей - непрерывной;

• изменение ограничений (добавление, исключение или модификация). При снятии ограничений получается оптимистичное решение, при введении — пессимистичное. Варьируя ограничениями, можно найти возможные граничные значения эффективности. Такой прием часто используется для нахождения предварительных оценок эффективности решений на этапе постановки задач;

• ограничение точности модели. Точность результатов модели не может быть выше точности исходных данных.

5. Баланс погрешностей различных видов. В соответствии с принципом баланса необходимо добиваться, например, баланса систематической погрешности моделирования за счет отклонения модели от оригинала и погрешности исходных данных, точности отдельных элементов модели, систематической погрешности моделирования и случайной погрешности при интерпретации и осреднении результатов.

6. Многовариантность реализаций элементов модели. Разнообразие реализаций одного и того же элемента, отличающихся по точности (а следовательно, и по сложности), обеспечивает регулирование соотношения «точность/сложность».

7. Блочное строение. При соблюдении принципа блочного строения облегчается разработка сложных моделей и появляется возможность использования накопленного опыта и готовых блоков с минимальными связями между ними. Выделение блоков производится с учетом разделения модели по этапам и режимам функционирования системы. К примеру, при построении модели для системы радиоразведки можно выделить модель работы излучателей, модель обнаружения излучателей, модель пеленгования и т.д.

В зависимости от конкретной ситуации возможны следующие подходы к построению моделей;

• непосредственный анализ функционирования системы;

• проведение ограниченного эксперимента на самой системе;

• использование аналога;

• анализ исходных данных.

Имеется целый ряд систем, которые допускают проведение непосредственных исследований по выявлению существенных параметров и отношений между ними. Затем либо применяются известные математические модели, либо они модифицируются, либо предлагается новая модель. Таким образом, например, можно вести разработку модели для направления связи в условиях мирного времени.

При проведении эксперимента выявляются значительная часть существенных параметров и их влияние на эффективность системы. Такую цель преследуют, например, все командно-штабные игры и большинство учений.

Если метод построения модели системы не ясен, но ее структура очевидна, то можно воспользоваться сходством с более простой системой, модель для которой существует.

К построению модели можно приступить на основе анализа исходных данных, которые уже известны или могут быть получены. Анализ позволяет сформулировать гипотезу о структуре системы, которая затем апробируется. Так появляются первые модели нового образца иностранной техники при наличии предва­рительных данных об их технических параметрах.

Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: стремления к полноте описания и стремления к получению требуемых результатов возможно более простыми средствами. Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности (существует известное правило: начинай с простых моделей, а далее усложняй). Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой ана­лиз позволяет исключать некоторые факторы из рассмотрения.

Сложные системы требуют разработки целой иерархии моделей, различающихся уровнем отображаемых операций. Выделяют такие уровни, как вся система, подсистемы, управляющие объекты и др.

 

Этапы построения математической модели.

Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Можно выделить следующие основные этапы построения моделей.

1. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и соотношения между ними. Например, фиксируется, что если значение одного параметра возрастает, то значение другого - убывает и т.п. Вопросы, связанные с полнотой и единственностью набора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление уско­рить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию.

На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели.

2. Формализация операций. Формализация сводится в общих, чертах к следующему. На основе содержательного описания определяется исходное множество характеристик системы. Для выделения существенных характеристик необходим хотя бы приближенный анализ каждой из них. При проведении анализа опираются на постановку задачи и понимание природы исследуемой системы. После исключения несущественных характеристик выделяют управляемые и неуправляемые параметры и производят, символизацию. Затем определяется система ограничений на значения управляемых параметров. Если ограничения не носят принципиальный характер, то ими пренебрегают.

Дальнейшие действия связаны с формированием целевой функции модели. В соответствии с известными положениями выбираются показатели исхода операции и определяется примерный вид функции полезности на исходах. Если функция полезности близка к пороговой (или монотонной), то оценка эффективности решений возможна непосредственно по показателям исхода операции. В этом случае необходимо выбрать способ свертки пока­зателей (способ перехода от множества показателей к одному обобщенному показателю) и произвести саму свертку. По свертке показателей формируются критерий эффективности и целевая функция.

Если при качественном анализе вида функции полезности окажется, что ее нельзя считать пороговой (монотонной), прямая оценка эффективности решений через показатели исхода операции неправомочна. Необходимо определять функцию полезности и уже на ее основе вести формирование критерия эффективности и целевой функции.

В целом замена содержательного описания формальным - это итеративный процесс.

3. Проверка адекватности модели. Требование адекватности находится в противоречии с требованием простоты, и это нужно учитывать при проверке модели на адекватность. Исходный вариант модели предварительно проверяется по следующим основным аспектам:

• Все ли существенные параметры включены в модель?

• Нет ли в модели несущественных параметров?

• Правильно ли отражены функциональные связи между параметрами?

• Правильно ли определены ограничения на значения параметров?

Для проверки рекомендуется привлекать специалистов, которые не принимали участия в разработке модели. Они могут более объективно рассмотреть модель и заметить ее слабые стороны, чем ее разработчики. Такая предварительная проверка модели позволяет выявить грубые ошибки. После этого приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. Для установления соответствия создаваемой модели оригиналу используются следующие пути:

• сравнение результатов моделирования с отдельными экспериментальными результатами, полученными при одинаковых условиях;

• использование других близких моделей;

• сопоставление структуры и функционирования модели с прототипом.

Главным путем проверки адекватности модели исследуемому объекту выступает практика. Однако она требует накопления статистики, которая далеко не всегда бывает достаточной для получения надежных данных. Для многих моделей первые два пути приемлемы в меньшей степени. В этом случае остается один путь: заключение о подобии модели и прототипа делать на основе сопоставления их структур и реализуемых функций. Такие заключения не носят формального характера, поскольку основываются на опыте и интуиции исследователя.

По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.

4. Корректировка модели. При корректировке модели могут уточняться существенные параметры, ограничения на значения управляемых параметров, показатели исхода операции, связи показателей исхода операции с существенными параметрами, критерий эффективности. После внесения изменений в модель вновь выполняется оценка адекватности.

5. Оптимизация модели. Сущность оптимизации моделей состоит в их упрощении при заданном уровне адекватности. Основными показателями, по которым возможна оптимизация модели, выступают время и затраты средств для проведения исследований на ней. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Преобразование может выполняться либо с использованием математических методов, либо эвристическим путем.

 

4. Математическая экономика — сфера теоретической и прикладной научной деятельности, целью которой является математически формализованное описание экономических объектов, процессов и явлений. Наряду с эконометрикой и исследованием операций математическая экономика является разделом математических методов в экономике — научного направления на стыке экономики и математики. Математические методы позволяют чётко, просто, строго и обобщённо формулировать ключевые теоретические положения и делать на их основе практические выводы[1]. Наряду с простейшими геометрическими методами в рамках математической экономики применяются методы интегрального и дифференциального исчисления, матричной алгебры, математического программирования, прочие вычислительные методы, составляются и решаются рекуррентные и дифференциальные уравнения[2][3].

Утверждается, что математика позволяет экономистам формулировать содержательные и проверяемые гипотезы в отношении широкого круга комплексных явлений, описание которых без привлечения математического аппарата представляется более сложным. Более того, противоречивая природа некоторых экономических явлений делает их исследование невозможным без использования математики[4]. Ныне значительная часть теоретико-экономических взаимосвязей нашла отражение вматематических моделях[5].

Математическая экономика позволила усовершенствовать многие методики экономического исследования, среди них:

· математическое программирование, применяемое для смоделированных экономических объектов;

· равновесный анализ, в рамках которого отдельные субъекты и крупные экономические системы представляются статическими объектами;

· сравнительная статика[6], то есть компаративный анализ равновесных состояний;

· динамический анализ, то есть исследование траекторий перехода между состояниями равновесия[7][3][8][9].

Метод математического моделирования экономических явлений и процессов обширно применяется с XIX века. Одним из первых широко используемых методов стало дифференциальное исчисление: экономисты использовали его для представления и исследования процесса максимизации полезности, приоритетного для домашних хозяйств критерия эффективности экономической деятельности. Именно тогда арсенал экономиста-исследователя пополнили методы математической оптимизации — раздела прикладной математики, посвящённого отысканию максимальных и минимальных значений тех или иных показателей. На протяжении первой половины XX века процесс математизации экономики продолжался. В середине столетия, во многом благодаря требованиям военного времени, область применения математических методов в экономике заметно расширилась. Важнейшим инструментов моделирования, разработанным в том числе и для решения экономических задач, стала теория игр[10][9].

Впрочем, процесс скорой систематизации экономического знания с помощью математических методов подвергся критике многих авторитетных учёных. Джон Мейнард Кейнс, Фридрих фон Хайек и другие исследователи говорили о том, что далеко не все аспекты человеческого поведения, в частности, экономического, поддаются математической формализации.

5. Этапы экономико-математического моделирования

 

Процесс экономико-математического моделирования включает в себя три структурных элемента: объект исследования, субъект (исследователь), модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Ниже представлена общая схема процесса моделирования:

Пусть имеется некоторый объект, который нужно исследовать методом моделирования. На первом этапе конструируем другой объект - модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте- оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго огранниченном смысле.Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Например, одну из форм такого исследования составляет прведение модельных эспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее " поведении". Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели.

Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели.

На четвертом этапе осуществляются практическая проверка с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвращаемся к проблематике объекта-оригинала.

1.Постановка экономической проблемы и ее качественный анализ.

На этом этапе нужно сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

[редактировать]

2.Построение математической модели.

Это этап формализации экономической проблемы, т.е выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация приводит к неизвестной ранее математической структуре.

[редактировать]

3. Математический анализ модели.

На этом этапе чисто математическими

приемами исследования выявляются общие свойства модели и ее решений. В

частности, важным моментом является доказательство существования решения

сформулированной задачи. При аналитическом исследовании выясняется,

единственно ли решение, какие переменные могут входить в решение, в

каких пределах они изменяются, каковы тенденции их изменения и т. д.

Однако модели сложных экономических объектов с большим трудом поддаются

аналитическому исследованию; в таких случаях переходят к численным

методам исследования.

 

4.Подготовка исходной информации.

В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

[редактировать]

5.Численное решение.

Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей являестя единственно возможным.

[редактировать]

6.Анализ численных результатов и их применение.

На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессо, выработка управленческих решений на всех уровня хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации. Результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследования с построения простой модели, можно получить полезные результаты, и затем перейти к созданию более совершенной модели.

6. Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.014 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал