Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Выпадение тяжелых металлов на ЕТР в начале XXI в.
Загрязнение атмосферы в ряде случаев может сопровождаться негативными явлениями на региональном уровне — возникновением в городах фотохимического смога и выпадением кислотных осадков на значительных техносферных и природных территориях. Общая схема реакций образования фотохимического смога в городах сложна и в упрощенном виде может быть представлена реакциями NO2 + hv - NO + О О + O2 - O3 }ПАН (пероксиацилнитраты)
Смог весьма токсичен, так как его составляющие обычно находятся в пределах: 03 — 60—75%; ПАН, Н202, альдегиды и др. - 25-40%. Для образования смога в атмосфере в солнечную погоду необходимо наличие оксидов азота и углеводородов (их выбрасывают в атмосферу автотранспорт, промышленные предприятия). Характерное распределение фотохимического смога по времени суток показано на рис. 5.28 (здесь — фоновая концентрация вещества в атмосферном воздухе). Фотохимические смоги, впервые обнаруженные в 40-х гг. XX в. в Лос-Анджелесе, теперь периодически наблюдаются в городах мира, где широко используется печное отопление и массовый автотранспорт. Кислотные дожди известны более 100 лет, однако проблема влияния этих дождей на природу и человека возникла около 35 лет назад. Источниками кислотных дождей служат газы, содержащие серу и азот. Основными из них являются S02, N0 , Н2S. Кислотные дожди возникают вследствие неравномерного распределения этих газов в атмосфере. Например, концентрация S02 (мкг/м3) обычно такова: в городе — 50—1000, на территории около города в радиусе около 50 км — 10—50, в радиусе около 150 км — 0, 1—2, над океаном — 0, 1. Основными в атмосфере являются следующие реакции: I вариант: S02+ ОН˙ → HS03; HS03 + ОН˙ → Н2S04 (молекулы в атмосфере быстро конденсируются в капли; здесь ОН˙ — свободный радикалl); II вариант: S02 + hv → S02 ˙ (S02 ˙ — молекула диоксида серы, находящаяся в возбужденном состоянии под действием гамма-кванта светового излучения); S02 + 02 → S04; S04 + 02 → S03 + Оз; S03 + Н2 О → Н2S04. Реакции обоих вариантов в атмосфере идут одновременно. Для сероводорода характерна реакция Н2S + 02 → S02 + Н2О и далее осуществление I или II вариантов реакции. Источниками поступления соединений серы в атмосферу являются следующие источники: естественные (вулканическая деятельность, действия микроорганизмов и др.) — 31—41%, антропогенные (ТЭС, промышленность и др.) — 59—69%; всего поступает 91—112 млн. т в год. Концентрации соединений азота (мкг/м3) достигают следующих значений: в городе — 10—100, на территории около города в радиусе 50 км — 0, 25—2, 5, над океаном — 0, 25. Из соединений азота основной вклад в прохождение кислотных дождей дают NO и N02. В атмосфере возникают реакции: 2NO + 02 → 2N02; N02+ ОН˙ → HNO . Источниками соединений азота являются следующие источники: естественные (почвенная эмиссия, грозовые разряды, горение биомассы и др.) — 63%, антропогенные (ТЭС, автотранспорт, промышленность) — 37%; всего поступает 51—61 млн. т в год. Серная и азотная кислоты поступают в атмосферу также в виде тумана и паров от промышленных предприятий и автотранспорта. В городах их концентрация достигает 2 мкг/м3. Соединения серы и азота, попавшие в атмосферу, вступают в химическую реакцию не сразу, а в течение некоторого промежутка времени, сохраняя свои свойства 2 и 8—10 сут соответственно. За это время они могут вместе с атмосферным воздухом пройти расстояния 1000—2000 км и лишь после этого выпадают с осадками на земную поверхность. Различают два вида седиментации: влажную и сухую. Влажная — это выпадение кислот, растворенных в капельной влаге, она возникает при влажности воздуха 100, 5%; сухая реализуется в тех случаях, когда кислоты присутствуют в атмосфере в виде капель диаметром около 0, 1 мкм. Скорость седиментации в этом случае весьма мала, и капли могут проходить большие расстояния (следы серной кислоты обнаружены даже на Северном полюсе). В нашей стране повышенная кислотность осадков (рН = 4÷ 5.5)отмечается в отдельных промышленных регионах. Наиболее неблагополучными являются города Тюмень, Тамбов, Архангельск, Северодвинск, Вологда, Петрозаводск, Омск и др. Плотность выпадения осадков серы, превышающая 4 т/км2 в год, зарегистрирована в 22 городах страны, а более 8—12 т/км2 в год — в городах Алексине, Новомосковске, Норильске, Магнитогорске. Возникновение таких глобальных проблем, как парниковый эффект и разрушение озонового слоя верхних слоев атмосферы, также связаны с поступлением в атмосферу различных примесей. Парниковый эффект. Суть его заключается в том, что Земля поглощает солнечное излучение (преимущественно в видимом диапазоне) и испускает теплоту в инфракрасном диапазоне. Главными поглотителями теплового излучения от земной поверхности служат диоксид углерода, метан и некоторые другие атмосферные примеси. Эти атмосферные примеси действуют подобно прозрачной крыши парника, пропуская к Земле коротковолновую часть спектра и задерживая у Земли длинноволновое тепловое излучение. Отсюда происходит и их название — парниковые газы. Чем выше их концентрация в атмосфере, тем выше парниковый эффект. Рост содержания С02 в атмосфере обусловлен потреблением углеводородных видов топлива — газа, нефти, угля. Другой источник С02 связан с изменениями растительного и почвенного покрова континентов. Вырубка лесов, а также распашка целинных земель и общая интенсификация земледелия приводят к более быстрому извлечению углерода из гумуса почв. За последние сто лет сжигание топлива дало выброс в атмосферу в среднем около 168 Гт углерода, а эмиссия вследствие изменения растительности континентов и необратимого нарушения почвенного покрова за это же время оценивается средней величиной 68 Гт углерода. Основным каналом стока избыточного углерода из атмосферы является океаносфера. Около 60% углерода поглощается океанами, а остальное количество — биотой континентов. Современная человеческая деятельность вносит значительные изменения в процесс функционирования морских экосистем. Через несколько десятилетий Мировой океан из-за загрязнения будет поглощать избыточный углерод менее эффективно, а доля остающегося в океаносфере С02 станет выше. Метан поступает в атмосферу из природных и техногенных источников. К природным источникам относятся донные отложения водоемов и болот. Техногенными источниками являются сельскохозяйственное производство, свалки бытовых отходов. Техногенные источники оксида азота (I) N20 связаны в основном с высокотемпературным окислением молекулярного азота в процессе горения различных видов топлива. В естественных условиях N20 поступает в атмосферу из почв, лесов и при грозовых разрядах. Из-за высокой химической инертности и малой растворимости в воде среднее время жизни N20 в атмосфере велико и составляет 120—150 лет. Хлорфторуглеводороды (фреоны) с середины 1930-х гг. находят широкое применение в промышленности. Фреон-11 и фреон-12 использовались в качестве вспенивателей при получении пористых полимерных материалов, наполнителей в аэрозольных упаковках, а также хладагентов в холодильниках и кондиционерах. Во второй половине 1980-х гг. во многих промышленно развитых странах были введены ограничения на производство и потребление этой продукции в связи с достигнутыми международными договоренностями о постепенном отказе от использования фторхлоруглеродов. Однако концентрации фреонов в атмосфере будут увеличиваться еще долгие годы даже после полного прекращения их производства, поскольку среднее время пребывания фреона-11 и фреона-12 в атмосфере оценивается примерно в 55—120 лет. Кроме того, значительные концентрации фреона-11 и фреона-12 и некоторых других соединений этого класса были зарегистрированы в газовых выбросах действующих вулканов и гидротермальных источников в сейсмически активных районах. Увеличение концентрации диоксида углерода в атмосфере (особенно интенсивное в последние годы) приводит к росту эффективности поглощения инфракрасного излучения. В качестве примера на рис. 5.29 отображена тенденция роста углекислого газа в последние десятилетия XX в., в результате чего температура Земли возрастает. К повышению температуры может привести и увеличение концентрации в атмосфере таких газов, как 03, СН4, N20, N02, S02, фреоны. Относительный вклад в парниковый эффект различных газов, возникающий при хозяйственной деятельности, показан в табл. 5.18
Таблица 5.18
|