Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Анализ поляризованного светаСтр 1 из 18Следующая ⇒
Пусть на кристаллическую пластинку, вырезанную параллельно оптической оси, нормально падает плоско поляризованный свет (рис. 283). Внутри пластинки он разбивается на обыкновенный (о) и необыкновенный (е) лучи, которые в кристалле пространственно не разделены (но движутся с разными скоростями), а на выходе из кристалла складываются. Так как в обыкновенном и необыкновенном лучах колебания светового вектора совершаются во взаимно перпендикулярных направлениях, то на выходе из пластинки в результате сложения этих колебаний возникают световые волны, вектор Е (а следовательно, и Н) в которых меняется со временем так, что его конец описывает эллипс, ориентированный произвольно относительно координатных осей. Уравнение этого эллипса (см. (145.2)): (194.1) где Еo и Еe — соответственно составляющие напряженности электрического поля волны в обыкновенном и необыкновенном лучах, — разность фаз колебаний. Таким образом, в результате прохождения через кристаллическую пластинку плоско поляризованный свет превращается в эллиптически поляризованный. Между обыкновенным и необыкновенным лучами в пластинке возникает оптическая разность хода или разность фаз где d — толщина пластинки, 0 — длина волны света в вакууме. Если = (no – ne) d = /4, = ± /2, то уравнение (194.1) примет вид т. е. эллипс ориентирован относительно главных осей кристалла. При Eo=Еe, (если световой вектор в падающем на пластинку плоскополяризованном свете составляет угол = 45° с направлением оптической оси пластинки) т. е. на выходе из пластинки свет оказывается циркулярно поляризованным. Вырезанная параллельно оптической оси пластинка, для которой оптическая разность хода называется пластинкой в четверть волны (пластинкой /4). Знак плюс соответствует отрицательным кристаллам, минус — положительным. Плоско поляризованный свет, пройдя пластинку /4, на выходе превращается в эллиптически поляризованный (в частном случае циркулярно поляризованный). Конечный результат, как уже рассматривали, определяется разностью фаз и углом . Пластинка, для которой называется пластинкой в полволны и т. д.
В циркулярно поляризованном свете разность фаз между любыми двумя взаимно перпендикулярными колебаниями равна ± /2. Если на пути такого света поставить пластинку /4, то она внесет дополнительную разность фаз ± /2. Результирующая разность фаз станет равной 0 или . Следовательно (см. (194.1)), циркулярно поляризованный свет, пройдя пластинку /4, становится плоско поляризованным. Если теперь на пути луча поставить поляризатор, то можно добиться полного его гашения. Если же падающий свет естественный, то он при прохождении пластинки /4 таковым и останется (ни при каком положении пластинки и поляризатора погашения луча не достичь). Таким образом, если при вращении поляризатора при любом положении пластинки интенсивность не меняется, то падающий свет естественный. Если интенсивность меняется и можно достичь полного гашения луча, то падающий свет циркулярно поляризованный; если полного гашения не достичь, то падающий свет представляет смесь естественного и циркулярно поляризованного. Если на пути эллиптически поляризованного света поместить пластинку /4, оптическая ось которой ориентирована параллельно одной из осей эллипса, то она внесет дополнительную разность фаз ± /2. Результирующая разность фаз станет равной нулю или . Следовательно, эллиптически поляризованный свет, пройдя пластинку /4, повернутую определенным образом, превращается в плоско поляризованный и может быть погашен поворотом поляризатора. Этим методом можно отличить эллиптически поляризованный свет от частично поляризованного или циркулярно поляризованный свет от естественного.
Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропнуюсреду. Волна может быть электромагнитной, акустической, гравитационной и т. д. Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент.
Вращение плоскости поляризации электромагнитной волны в плазме при наложении магнитного поля (эффект Фарадея). Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной), для упругих поперечных волн — акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра). Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см. Фотоупругость). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрации оптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества. В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах. Общая теория относительности предсказывает вращение плоскости поляризации световой волны в пустоте при распространении световой волны в пространстве с некоторыми типами метрики вследствие параллельного переноса вектора поляризации по нулевой геодезической — траектории светового луча (гравитационный эффект Фарадея, или эффект Рытова — Скротского)[1]. Оптически активные вещества — среды, обладающие естественной оптической активностью. Оптическая активность — это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Метод исследования оптической активности — поляриметрия. Содержание
|