Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 7. Гидравлические и аккумулирующие электрические СТАНЦИИ
Основой изучения работы ГЭС, преобразующих энергию воды в электрическую энергию, является наука, называемая гидравликой; она включает в себя гидростатику, изучающую равновесие жидкостей, и гидродинамику, изучающую движение жидкостей. Мощность потока воды, протекающего через некоторое сечение — створ, определяется расходом воды Q, высотой между уровнем воды в верхнем по течению бассейне (верхнем бьефе) и уровнем воды в нижнем по течению бассейне (нижнем бьефе) в месте сооружения плотины. Разность уровней верхнего и нижнего бассейнов называется напором. Мощность потока в створе (кВт) можно определить посредством расхода (м3/с) и напора (м): P=9.81QH В двигателях ГЭС можно использовать только часть мощности потока воды в створе из-за неизбежных потерь мощности в гидротехнических сооружениях, турбинах и генераторах, учитываемых коэффициентом полезного действия η. Таким образом, приближенно мощность ГЭС P= 9, 81QHη. Напор Н увеличивают на равнинных реках с помощью плотины (рис. 2.17, а), а в горных местностях строят специальные обводные каналы, называемые деривационными (рис. 2.17, б). В гидравлических турбинах преобразуется энергия воды в механическую энергию вращения вала турбины. Турбина называется активной, если используется динамическое давление воды, и реактивной, если используется статическое давление при реактивном (см. рис. 2.11) эффекте. В ковшовой активной турбине (рис. 2.18, а) потенциальная энергия гидростатического давления в суживающейся насадке — сопле — полностью превращается в кинетическую энергию движения воды. Рабочее колесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти (рис. 2.18, б). Вода, огибая поверхности лопастей, меняет направление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения колеса турбины. Если скорость движения воды, вытекающей из турбины, равна нулю, то вся кинетическая энергия воды, не считая потерь, превращается в механическую энергию турбины. Внутри сопла расположена регулирующая игла (рис. 2.18), перемещением которой меняется выходное сечение сопла, а следовательно, и расход воды. В реактивной гидравлической турбине на лопастях рабочего колеса преобразуется как кинетическая, так и потенциальная энергия воды в механическую энергию турбины. Вода, поступающая на рабочее колесо турбины, обладает избыточным давлением, которое по мере протекания воды по проточному тракту рабочего колеса уменьшается. При этом вода оказывает реактивное давление на лопасти турбины и слагающая потенциальной энергии воды превращается в механическую энергию рабочего колеса турбины. За счет кривизны лопастей изменяется направление потока воды, при котором, как и в активной турбине, кинетическая энергия воды в результате действия центробежных сил превращается в механическую энергию
Рис. 2.17. Схема создания напора: а —с помощью плотины; б —с помощью деривационного канала: / — канал; 2 — напорный бассейн; 3 — турбинные водоводы; 4 —здание ГЭС; 5 —русло реки; 5 — плотина
Рис. 2.18. Схема работы активной турбины: а — схема турбинной установки; 6 — рабочее колесо; 1 — верхний бьеф; 2 — трубопровод; 3 — сопло; 4 — рабочее колесо; 5 — кожух; 6 — отклонитель; 7 — лопасти (ковши)
Санься (Три ущелья) - действующая и достраивающаяся ГЭС в Китае на реке Янцзы, крупнейшая электростанция в мире Проектная мощность ГЭС — 22, 4 ГВт. Планируемая среднегодовая выработка около 100 млрд кВт·ч, в 2008 году было произведено 80, 8 млрд кВт·ч. В трёх зданиях ГЭС должны быть размещены 32 радиально-осевых гидроагрегата мощностью по 700 МВт при расчетном напоре 80, 6 м. После добавления подземного машинного зала количество вырабатываемого электричества в год будет в большей степени зависеть от размера паводка на Янцзы, для сработки которого и предназначены дополнительные электрогенераторы. Напорные сооружения ГЭС образуют крупное водохранилище площадью 1 045 км2, полезной ёмкостью 22 км3. Максимально допустимая высота верхнего бьефа над уровнем моря (НПУ) равная 175 м была впервые достигнута в 2010 году, водохранилище может срабатываться до 145 м. Высота нижнего бьефа над уровнем моря составляет 66 м. Таким образом, напорный уровень в течение года изменяется от 79 м до 109 м, максимум достигается в сезон летних муссонов. Гидроузел оборудован водосбросом пропускной способностью 116 000 м2/сек. При создании водохранилища было затоплено 27 820 га обрабатываемых земель, было переселено около 1, 2 млн человек. Под воду ушли города Ваньсянь и Ушань. ГЭС " Санься" будет иметь огромное значение для экономики Китая, обеспечив покрытие годового роста потребления электроэнергии. Электростанция вместе с ГЭС Гэчжоуба в нижнем бьефе станет центром объединённой энергосистемы Китая. Второй функцией плотины является регулирование водного режима Янцзы. За последние две тысячи лет губительные паводки происходили более двухсот раз. Только в XX веке катастрофические разливы реки стали причиной гибели около полумиллиона человек. ГЭС должна частично защитить земли в нижнем течении Янцзы от разрушительных наводнений. Также планируется перебрасывать 5 процентов годового стока Янцзы в бассейн Хуанхэ, что вдвое увеличит полноводность Жёлтой реки и позволит расширить орошаемые площади в Северном Китае. Оборудование гидроузла шлюзами и образование водохранилища улучшило условия судоходства в этой части Янцзы, что позволило увеличить общий грузооборот примерно в десять раз и довести его до более чем 100 млн тонн различных грузов в год.
Аккумулирующие электрические станции. Производство электроэнергии на электрических станциях и ее потребление различными приемниками представляют собой процессы, взаимосвязанные таким образом, что в силу физических закономерностей мощность потребления электроэнергии в какой-либо момент времени должна быть равна генерируемой мощности. При идеальном равномерном потреблении электроэнергии должна происходить равномерная работа определенного числа электростанций. В действительности работа большинства отдельных электроприемников неравномерна и суммарное потребление электроэнергии также неравномерно. Можно привести множество примеров неравномерности работы установок и приборов, потребляющих электроэнергию. Завод, работающий в одну или две смены, неравномерно потребляет электрическую энергию в течение суток. В ночное время потребляемая им мощность близка к нулю. Улицы и квартиры освещают только в определенные часы суток. Работа электробытовых приборов, вентиляторов, пылесосов, электрических печей, нагревательных приборов, телевизоров, радиоприемников, электробритв также неравномерна. В утренние и вечерние часы коммунальная нагрузка наибольшая. График нагрузки некоторого района или города, представляющий собой изменение во времени суммарной мощности всех потребителей, имеет провалы и максимумы. Это означает, что в одни часы суток требуется большая суммарная мощность генераторов, а в другие часы часть генераторов или электростанций должна быть отключена или должна работать с уменьшенной нагрузкой. Число электростанций и их мощность определяются относительно непродолжительным максимумом нагрузки потребителей. Это приводит к недоиспользованию оборудования и удорожанию энергосистем. Так, снижение числа часов использования установленной мощности крупных ТЭС с 6000 до 4000 ч в год приводит к возрастанию себестоимости вырабатываемой электроэнергии на 30—35% Анализ тенденций в потреблении электрической энергии показывает, что в дальнейшем неравномерность потребления будет увеличиваться по мере роста благосостояния населения и связанного с ним увеличения коммунально-бытовой нагрузки, по мере повышения электровооруженности труда. Сокращение числа рабочих дней в неделе также способствует повышению неравномерности потребления электроэнергии. Такое положение характерно не только для нашей страны. В большинстве стран Западной Европы неравномерность в потреблении электроэнергии такова, что в течение часа изменение нагрузки достигает 30% от максимальной мощности и в перспективе также ожидается увеличение неравномерности. Кардинально изменить характер потребления электроэнергии очень трудно, так как он зависит от установившегося ритма жизни людей и ряда не зависящих от людей объективных обстоятельств. Например, нельзя изменить того факта, что электрическое освещение нужно в вечерние часы с наступлением темноты. Энергетики по возможности принимают меры по выравниванию графика суммарной нагрузки потребителей. Так, вводится дифференцированная стоимость электроэнергии в зависимости от того, в какой период времени она потребляется. Если электроэнергия потребляется в моменты максимумов нагрузки, то и стоимость ее устанавливается выше. Это повышает заинтересованность потребителей в таких перестройках работы, которые бы способствовали уменьшению электрической нагрузки в моменты максимумов потребления в энергосистеме. В целом возможности выравнивания потребления электроэнергии невелики. Следовательно, электроэнергетические системы должны быть достаточно маневренными, способными быстро изменять мощность электростанций. В промышленно развитых странах большая часть электроэнергии (80%) вырабатывается на ТЭС, для которых наиболее желателен равномерный график нагрузки. На агрегатах этих станций невыгодно проводить регулирование мощности. Обычные паровые котлы и турбины на этих станциях допускают изменение нагрузки всего на 10—15%. Периодические включения и отключения ТЭС не позволяют решить задачу регулирования мощности из-за большой продолжительности этих процессов. На запуск тепловой станции в лучшем случае требуются часы. Кроме того, работа крупных ТЭС в резко переменном режиме нежелательна, так как приводит к повышенному расходу топлива, повышенному износу теплосилового оборудования и, следовательно, снижению его надежности. Следует учесть также, что ТЭС с высокими параметрами пара имеют некоторые минимальные технически возможные рабочие мощности, составляющие 50—70% от номинальной мощности оборудования. Все это относится не только к ТЭС, но и к АЭС. Поэтому в настоящее время и в ближайшем будущем дефицит в маневренных мощностях («пик» нагрузки) покрывается ГЭС, у которых набор полной мощности с нуля можно произвести за 1—2 мин. Однако в европейской части России степень использования экономически эффективных гидроэнергоресурсов уже превысила 40%. Оставшаяся неиспользованной часть ресурсов относится к периферийным районам и небольшим водотокам. Регулирование мощности ГЭС производится следующим образом. В периоды времени, когда в системе имеются провалы нагрузки, ГЭС работают с незначительной мощностью и вода заполняет водохранилище. При этом запасается энергия. С наступлением пиков включаются агрегаты станции и вырабатывается энергия. Накопление энергии в водохранилищах на равнинных реках приводит к затоплению обширных территорий, что во многих случаях крайне нежелательно. Небольшие реки малопригодны для регулирования мощности в системе, так как они не успевают заполнить водой водохранилище. Задачу снятия пиков решают гидроаккумулирующие, станции (ГАЭС), работающие следующим образом (рис. 2.23). В интервалы времени, когда электрическая нагрузка в объединенных системах минимальна, ГАЭС| перекачивает воду из нижнего водохранилища в верхнее и потребляет при этом электроэнергию из системы (рис. 2.23, а). В режиме непродолжительных «пиков» -максимальных значений нагрузки— ГАЭС работает в генераторном режиме и расходует запасенную в верхнем водохранилище воду. В 1970-е годы была поставлена задача подготовки к строительству целой сети мощных ГАЭС на территории всей европейской части России. Институт «Гидропроект» подготовил техническую документацию на шесть ГАЭС общей мощностью около 9 тыс. МВт, велась работа еще по семи крупным станциям общей мощностью 17 тыс. МВт. Были выбраны два десятка площадок для строительства станций, в том числе в Ленинградской и Тверской областях, а также на Кавказе, проведены изыскательские работы. В 1980-х началось строительство двух мощных ГАЭС – Круонисской в Литве и Ташлыкской на Украине. Эти станции были технологически завязаны на Игналинскую и Южно-Украинскую АЭС. У ГАЭС широчайший диапазон регулирования – он более, чем вдвое превышает их установленную мощность за счет того, что они способны не только вырабатывать энергию, но и поглощать ее, причем в количествах, существенных для региональных энергосистем. В советское время рассматривался вопрос о строительстве ГАЭС возле всех атомных станций. Однако реально в нашей стране работает пока только одна гидроаккумулирующая электростанция – Загорская ГАЭС в Московской области, на реке Кунья, в 20 км к северу от Сергиева Посада. Строительство станции началось еще в 1974 г., в 1987г. Был пущен первый агрегат, затем работы с переменным успехом продолжались до 2000г. Наконец, в конце 2003г. станция была запущена в эксплуатацию. Ее шесть агрегатов, работающих по двухмашинной схеме, суммарной мощностью 1200 МВт являются реверсивными: они могут работать в обычном турбинном режиме, генерируя электроэнергию (днем, в период пиковых нагрузок), и в насосном - когда они закачивают воду из нижнего бьефа в верхний (ночью, в период пониженного потребления). Регламентное время подготовки и раскрутки его 104 – тонного рабочего колеса диаметром 6, 3 м в генераторном режиме составляет всего четыре минуты. В насосном режиме раскрутка этого агрегата до момента синхронизации его с сетью составляет около 10 мин. Время работы станции в каждом из режимов – примерно четыре часа в сутки. КПД этого процесса отрицательный, около – 25%, но, как ни удивительно, ЗаГАЭС даже приносит некоторую прибыль за счет разницы в ночном и дневном тарифах на электроэнергию. На первых ГАЭС для выработки электроэнергии использовали турбины Т и генераторы Г, а для перекачки воды в верхний бассейн — электрические двигатели Д и насосы Н (рис. 2.23, 6). Такие станции называли четырех машинными — по числу устанавливаемых машин. В силу независимости работы генератора и насоса иногда четырехмашинная схема оказывается экономически наиболее выгодной. Совмещение функций генератора и двигателя привело к трехмашинной компоновке ГАЭС (рис. 2.23, в).
Рис. 2.23. Схема работы гидроаккумулирующей станции: а — схема станции: 1 — верхний бассейн; 2 — водовод; 3 — здание ГАЭС; 4 — нижний бассейн; 6, в и г — компоновка агрегатов станции четырехмашинная, трехмашинная и двухмашинная
ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов (рис. 2.23, г). Число машин при этом сведено к двум. Однако станции с двухмашинной компоновкой имеют более низкое значение КПД из-за необходимости создавать в насосном режиме примерно в 1, 3—1, 4 раза больший напор на преодоление трения в водоводах. В генераторном режиме напор из-за трения в водоводах меньше. Для того чтобы агрегат одинаково эффективно работал как в генераторном, так и в насосном режимах необходимо в насосном режиме увеличить его частоту вращения. Применение разных частот вращения в обратимых генераторах привело к усложнению и удорожанию их конструкции. КПД агрегата можно повысить также, устанавливая в насосном режиме более крутой угол наклона лопастей турбины. При реверсивной работе агрегатов возникает ряд технических и эксплуатационных трудностей, например, связанных с охлаждением. Предназначенные для охлаждения вентиляторы успешно работают только в одном направлении вращения. Перспективы применения ГАЭС во многом зависят от КПД, под которым применительно к этим станциям понимается отношение энергии, выработанной станцией в генераторном режиме, к энергии, израсходованной в насосном режиме. Первые ГАЭС в начале XX в. имели КПД не выше 40%, У современных ГАЭС КПД составляет 70—75%. К преимуществам ГАЭС кроме относительно высокого значения КПД относится также и низкая стоимость строительных работ. В отличие от обычных ГЭС здесь нет необходимости перекрывать реки, возводить высокие плотины с длинными туннелями и т. п. Ориентировочно на 1 кВт установленной мощности на крупных речных ГЭС требуется 10 м3 бетона, а на крупных ГАЭС — всего лишь несколько десятых кубометров бетона. ГАЭС и ветровые электростанции, отличающиеся непостоянством вырабатываемой мощности, удачно сочетаются между собой. При этом трудно рассчитывать на мощность ветровых станций в часы «пик» в энергосистеме. Если же вырабатываемую на этих станциях электроэнергию запасать на ГАЭС в виде воды, перекачиваемой в верхний бассейн, то выработанная на ветровых электростанциях за какой-либо промежуток времени энергия может быть использована в соответствии с потребностями системы. Преимущества ГАЭС позволяют широко применять их для аккумулирования энергии. Впиковые часы потребления электроэнергии наряду с ГАЭС можно использовать супермаховики. Супермаховик — это маховик, который можно разгонять до огромной скорости, не боясь его разрыва. Он состоит из концентрических колец, навитых из кварцевого волокна и насаженных друг на друга с небольшими зазорами, заполненными эластичным веществом типа резины для предохранения обода от расслоения. Супермаховик соединен с валом генератора и помещен в герметичный корпус, в котором поддерживается вакуум. Устройство работает как генератор, когда возрастает потребление энергии в системе, и как электродвигатель, когда энергию целесообразно аккумулировать. По некоторым расчетам, затраты на 1 кВт установленной мощности супермаховика меньше, чем при гидроаккумулировании. Разработан проект супермаховика массой 1, 96 МН и диаметром 5 м, в котором предусматривается накопление энергии до 20 МВт× ч. Рабочая частота вращения супермаховика—3500 мин-1.
Рис. 2.24. Схема агрегата, аккумулирующего механическую энергию: 1 — супермаховик; 2 — мотор-генератор; 3 — подшипник; 4 — камера супермаховика На рис. 2.24 показан проект установки с аккумулирующим энергию супермаховиком. Возможны аккумулирующие установки, создающие запас сжатого воздуха. Энергию этого воздуха Эв можно использовать для приведения в действие турбин, вращающих генераторы, которые в пик нагрузки будут отдавать энергию Эв в сеть. Электрические установки, аккумулирующие электроэнергию. Такие установки в виде индуктивных или емкостных накопителей могут подключаться через выпрямитель к сети переменного тока. Индуктивные — получают заряд ЭL = LI2/2, где I — выпрямленный ток; L — индуктивность. Емкостной -заряжается до величины Эс=СU2/2, где U — выпрямленное напряжение; С — емкость конденсаторов. Для уменьшения потерь и длительного сохранения накопленной энергии применяются специальные мероприятия (охлаждение, уменьшение активного сопротивления, увеличение L и С и т. д.). Накопленная энергия Эl или Эс отдается в сеть через преобразователь в виде энергии переменного тока. Энергия морских приливов, или, как иногда ее называют, «лунная энергия», известна человечеству со времен глубокой древности. Эта энергия еще в далекие исторические эпохи использовалась для приведения в движение различных механизмов, в особенности мельниц. В Германии с помощью энергии приливной волны орошали поля, в Канаде — пилили дрова. В Англии приливная водоподъемная машина служила в прошлом веке для снабжения Лондона водой. Существует огромное количество остроумных проектов приливных технических установок. Только во Франции к 1918 г. было опубликовано более 200 таких патентов. В начале XX в. предпринимались попытки сооружения мощных приливных электростанций. В США в 1935 г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн. долл., было прекращено из-за выявившейся высокой стоимости электроэнергии (на 33% больше стоимости на тепловой станции). По составленному в 1940г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у речных электростанций. Приливные электрические станции (ПЭС) выгодно отличаются от ГЭС тем, что их работа определяется космическими явлениями и не зависит от многочисленных погодных условий, определяемых случайными факторами. Наиболее существенный недостаток ПЭС — неравномерность их работы. Неравномерность приливной энергетической энергии в течение лунных суток и лунного месяца, отличающихся от солнечных, не позволяет систематически использовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность работы ПЭС, совместив ее с ГАЭС. В то время, когда имеется избыточная мощность ПЭС, ГАЭС работает в насосном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая электроэнергию в систему. В техническом отношении такой проект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин. Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее остановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранилище. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС. ПЭС работают в условиях быстрого изменения напора, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана достаточно совершенная и компактная горизонтальная турбина двойного действия. Электрический генератор и часть деталей турбины заключены в водонепроницаемую капсулу и весь гидроагрегат погружен в воду.
|