Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Накопители, использующие принципы магнитной записи
В середине XX века был предложен новый метод хранения информации в ЭВМ, основанный на магнитной записи. Суть его вкратце состоит в том, что рабочая поверхность носителя изготавливается из специального материала - ферромагнетика. Если воздействовать на него внешним магнитным полем, то после прекращения воздействия проявляется остаточная намагниченность вещества. Ее-то и регистрируют затем считывающие устройства. Чтение/запись информации производятся специальной магнитной головкой, перемещающейся относительно магнитного носителя. Устройства, реализующие этот принцип, начали появляться с 1951 года. Некоторые из них дожили и до нашего времени – стримеры, жесткие диски, флоппи-драйвы, ZIP-драйвы. В этой же части обзора мы рассмотрим только ставшие историей накопители на магнитных картах. Накопители на магнитных картах (НМК) Накопители на магнитных картах (НМК) по конструкции весьма напоминают накопители на перфокартах. Сама же магнитная карта представляет собой прямоугольный отрезок носителя с магнитным покрытием. Карты помещаются в специальное хранилище - магазин. При обращении к ЗУ специальное устройство осуществляет выбор или подачу из магазина заданной карты. Информация на магнитную карту может быть записана неоднократно, то есть НМК относится к ППЗУ. Стандартная информационная емкость магнитной карты – 1КБ. Считывание/стирание/запись информации производится с помощью магнитных головок и существенно выше, чем при работе с перфокартами (см. табл. 1). В отличие от перфокарт и перфолент, магнитные карты хоть уже и не применяются в современных компьютерах, но используются в других областях, например в качестве кредитных или идентификационных карточек. Носителем информации в них является магнитная полоса. Правда сейчас они активно вытесняются смарт-картами и RFID-картами и в ближайшее время тоже канут в прошлое. Накопители на магнитной карте не были мейнстримом, они использовались в ограниченном числе моделей машин, гораздо большее распространение получили их «родственники» - накопители на магнитной ленте или стримеры, но о них в следующей части. Таблица 1. Сравнение параметров устаревших видов ЗУ с последовательным доступом
Большая часть ЗУ с последовательным доступом, не выдержав конкуренции с другими типами памяти, уже повымерла, до наших дней, видоизменяясь и совершенствуясь, дожил, пожалуй, лишь один тип ЗУ с последовательным доступом – накопитель на магнитной ленте или, как его еще называют, стример (от английского “stream” - поток). История стримеров насчитывает более полувека, а началась она в 1953 году, когда IBM представила первый накопитель на магнитной ленте. В нем использовалась многодорожечная лента шириной полдюйма располагавшаяся на бобинах. Своим устройством стример весьма напоминает обычный аудио- или видеомагнитофон. И это неудивительно – цифровой сигнал, с которым работают стримеры, является частным случаем аналогового, применяемого в аудио- и видеозаписи. Стримеры представляют из себя ЗУ со сменным носителем. Изначально в них использовались бобины, затем кассеты, а сейчас в стримерах применяются в основном картриджи. Применение стримеров На базе стримеров также организуются массивы, аналогичные дисковым RAID-массивам. При этом пропускная способность увеличивается в соответствующее количеству накопителей раз. Существуют также специальные автоматизированные библиотеки на основе стримеров, где обеспечивается возможность хранения многих тысяч картриджей и автоматической установкой/сменой их в накопителях. В таких системах может использоваться до нескольких сотен накопителей. Устройство и принципы работы стримеров Линейный метод записи Принцип тот же что и в обычном кассетном магнитофоне. Наклонно-строчный метод записи Преимуществом этого метода является меньшая линейная скорость протяжки ленты. Поэтому в устройствах, работающих на этом принципе, можно применять более тонкую ленту. Соответственно, при одинаковых размерах картриджа, длина ленты может быть намного больше. Недостатком метода можно считать более быстрый износ ленты и головки. Практически все стримеры практикуют программное и/или аппаратное сжатие информации. Это позволяет «малой кровью» достаточно серьезно увеличить емкость носителя и скорость работы с информацией. Поскольку данные бывают разные (от текстовых файлов, «утрамбовываемых» в 5-10 раз до.mp3 файлов, несжимаемых вообще), а оценивать как-то надо, то производители стримеров используют для оценки двукратное сжатие (2: 1), увеличивая на этот же коэффициент и скорость работы с информацией. Далее, если не оговаривается специально, мы будем иметь в виду емкость носителя и скорость работы именно с несжатыми данными. Интерфейсы стримеров Семейства и форматы НМЛ Стримеры, использующие методы линейной и линейно-серпантинной записи QIC, QIC-Wide и Travan Накопители QIC используют обычный линейный метод записи, форматов же существует великое множество. Все они отличаются типом ленты, числом дорожек и плотностью записи. Максимальная емкость картриджа в накопителях работающих по методу QIC составляет около 700МБ, что, конечно же, недостаточно для архивации больших объемов данных. Для увеличения емкости, корпорация SONY в 80-х годах представила свою версию QIC - стандарт QIC-Wide, где емкость картриджа была увеличена до 2, 3ГБ. В 1994 году фирма Imation, создала новый стандарт картриджа на основе QIC и QIC-Wide, который был назван Travan. В этом стандарте максимальная емкость картриджа составляет 10ГБ, а при использовании сжатия — до 20ГБ. Накопители Travan могут также работать с некоторыми картриджами QIC и QIC-Wide. Недостатком накопителей семейства QIC было низкое быстродействие и недостаточная емкость картриджей. В результате они вытеснены с рынка более производительными устройствами и в настоящее время уже не производятся. DLT (Digital Linear Tape, цифровая линейная запись) В устройствах DLT используется полудюймовая магнитная лента. Информация записывается так называемым линейно-серпантинным методом. Лента современных устройств стандарта DLT содержит до 208 дорожек, а емкость картриджа достигает 35ГБ несжатых данных. Технология DLT предоставляет мощные средства контроля целостности данных: используются коды коррекции ошибок по Риду-Соломону (ECC), 64-битный избыточный циклический код (CRC) и 16-битный код обнаружения ошибок (EDC). В 1998 году Quantum анонсировала технологию Super DLT, которая позволит в будущем увеличить объем картриджа до 1ТБ несжатых данных и скорость записи до 100МБ/сек за счет многочисленных инновационных решений, таких, например как, использование комбинации методов оптической и магнитной записи (LGRT - Laser Guided Magnetic Recording). SLR (Scalable Linear Recording) LTO (Linear Tape Open, открытый стандарт линейной записи) Формат Accellis разрабатывался для обеспечения исключительно быстрого доступа к данным. Предполагалось, что устройства, использующие этот формат, обеспечат среднее время доступа порядка 10 сек и будут иметь емкость 25 ГБ несжатых данных. Но на рынке, насколько мне известно, так и не появилось накопителей, работающих с этим форматом. Другая разновидность LTO - формат Ultrium оказался более жизнеспособным. Первые стримеры этого формата появились в 2000 году и обеспечивали емкость 100ГБ несжатых данных при скорости записи 7, 5МБ/сек, современные же обеспечивают скорость записи до 80МБ/сек на картриджи до 400ГБ. В планах разработчиков повысить эти цифры в два раза в стримерах Ultrium 4-го поколения. Из особенностей этого формата можно упомянуть следующиие: ADR (Advanced Digital Recording) В технологии предусмотрена двойная ECC-коррекция ошибок - как горизонтально, так и вертикально. Изменяемая скорость подачи ленты позволяет подстраиваться под скорость передачи данных с диска без замедления самого процесса резервного копирования. Накопители ADR воспринимаются ОС как отдельный диск, данные с которого напрямую доступны в ОС, то есть можно использовать содержимое ленты без восстановления данных. ADR позволяют сохранить 25 Гбайт несжатых данных на ленту. В будущем планируется увеличить емкость картриджа в несколько раз. Стримеры, использующие метод наклонно-строчной записи DAT/DDS (Digital Audio File/Digital Data Storage) Стримеры этого формата - недорогие и достаточно эффективные устройства резервного копирования данных небольшого объема (формат DDS-4 обеспечивал емкость до 40ГБ). Не так давно появились модели нового поколения - DAT 72. Новые модели отличает вдвое большая емкость (до 72ГБ), достаточно низкая цену и совместимость по чтению и по записи с картриджами DDS предыдущих форматов. Скорость записи у новых моделей 3МБ/сек. Недостатком DAT/DDS является высокая чувствительность к механическим воздействиям а также быстрый износ головок. Mammoth tape Накопители формата Mammoth позволяют записать на картридж 60ГБ несжатых данных со скоростью 12 МБ/сек. Срок службы магнитных головок составляет около 50тыс.ч. В накопителях для обеспечения целостности данных применяется двухуровневое кодирование Рида-Соломона. Для очистки поверхности магнитных головок в этих стримерах используется специальная кассета SmartClean, в которой перед обычной магнитной лентой расположен небольшой отрезок чистящей ленты. В результате головки накопителя очищаются без вмешательства оператора. VXA компании Ecrix OSO (Over Scan Operation, многократное сканирование) — В накопителях VXA осуществляется избыточное чтение каждой группы пакетов данных, что позволяет восстановить информацию даже с поврежденных лент. VSO (Variable Speed Operation, работа на разных скоростях) Позволяет менять скорость ленты в соответствии с изменением скорости передачи данных. В отличие от обычного накопителя, где при перерыве в передаче данных, лента отматывается назад, VXA-накопитель просто останавливается, ожидает поступления очередной порции данных и продолжает запись с места, где ранее произошла остановка. AIT (Advanced Intelligent Tape) В AIT впервые была использована встроенная флэш-память MIC (Memory-In-Cassette), в которой помещается служебная информация о содержимом ленты и карта распределения данных, позволяющая оптимизировать доступ к ним. При использовании других технологий такая информация обычно хранится в первых сегментах ленты. В результате использования MIC поиск ускоряется в сотни раз по сравнению со скоростью чтения/записи. Накопители AIT имеют систему слежения ATF (Auto Tracking Following), которая используется для точной записи на дорожку данных, и усовершенствованную технологию сжатия ALCD (Advanced Lossless Data Compression), разработки корпорации IBM. Она позволяет выполнять сжатие с коэффициентом 2, 6: 1 против обычного 2: 1 для других технологий. В этот накопитель встроена система очистки головок, которая активизируется при достижении лимита корректируемых ошибок. S-AIT (Super Advanced Intelligent Tape) Скоро должен появиться SAIT-2, емкость картриджа в нем будет увеличена в два раза, до 1ТБ при скорости записи 60 МБ/с. Также в разработке следующие поколения SAIT-3 и SAIT-4, где характеристики планируется удваивать от поколения к поколению. Прочие виды стримеров Мой следующий компьютер Spectrum-48 также дружил с магнитофоном до тех пор, пока его не удалось «познакомить» с дисководом, а потом и с жестким диском. И до сих пор, роясь в старых аудиокассетах, бывает, находишь образчики с завлекательными надписями типа «все DIZZI» или «Elite и другие леталки», которые, будучи вставленными в магнитофон выдают очень специфический звук, чем-то сходный со звуком коннекта модема. Что до емкости, то на 90 минутную аудиокассету «влезало» около 0, 5 – 1 МБ, а считывалась информация со скоростью около 10КБ/мин. Кроме того, в ZX-Спектрумах следующих лет использовались мини-картриджи ZX Microdrive. Их емкость составляла около 100КБ, а скорость 200-300 КБ/мин. В качестве стримера может быть использован и видеомагнитофон. Многие помнят хиты прошлых лет – советские стримеры “АрВид”, представляющие собой ISA-платы с возможностью подключения к ним практически любого «видака». На 180-минутную видеокассету записывалось от 1-2 ГБ информации (первые АрВиды без сжатия) и до 10ГБ (в режиме SuperLongPlay) со скоростью 12-15МБ/мин. Преимуществом устройства была (вплоть до появления DVD-R) непревзойденно низкая стоимость хранения информации. Подобный вариант использования VHS видеокассет реализован в проекте Digital VHS. Результаты впечатляют: поток 1, 6-2, 6 МБ/сек, емкость носителя (180минутная видеокассета) -16-28 Гб. Не так давно, в 2003 году, компания DV Streamer Ltd. выпустила программу DV Streamer PRO, которая позволяет записывать данные с ПК на ленту DV. То есть видеокамера DV превращается в стример. Вы можете записывать до 8, 7 Гбайт данных на 60-минутную ленту. Максимально же (используя технологию LongPlay и отключив коррекцию ошибок) на кассету можно записать до 15ГБ информации.
2.Накопители с произвольным доступом к памяти. Запоминающее устройство с произвольным доступом — ЗУПД (или Запоминающее устройство произвольной выборки — ЗУПВ) (от англ. Random Access Memory) — один из видов памяти, позволяющий в любой момент времени получить доступ к любой ячейке по её адресу на чтение или запись. ЗУПВ используются в качестве оперативной памяти персонального компьютера. Предназначены для записи, хранения и считывания информации в процессе её обработки. Подразделяются на статические и динамические. В статических ОЗУ запоминающий элемент представляет собой триггер, изготовленные по той или иной технологии (ТТЛ, ЭСЛ, КМОП и др.), что позволяет считывание информации без её потери. В динамических ОЗУ элементом памяти является ёмкость (например, входная ёмкость полевого транзистора), что требует восстановления записанной информации в процессе её хранения и использования. Это усложняет применение ОЗУ динамического типа, но позволяет реализовать больший объём памяти. В современных динамических ОЗУ имеются встроенные системы синхронизации и регенерации, поэтому по внешним сигналам управления они не отличаются от статических.
Виды ЗУПВ: Полупроводниковая статическа я (SRAM) — ячейки представляют собой полупроводниковые триггеры. Достоинства — небольшое энергопотребление, высокое быстродействие. Отсутствие необходимости производить «регенерацию». Недостатки — малый объём, высокая стоимость. Сейчас широко используется в качестве кеш-памяти процессоров в компьютерах. Полупроводниковая динамическая (англ. Dynamic Random Access Memory, DRAM) — каждая ячейка представляет собой конденсатор на основе перехода КМОП-транзистора. Достоинства — низкая стоимость, большой объём. Недостатки — необходимость периодического считывания и перезаписи каждой ячейки — т. н. «регенерации», и, как следствие, понижение быстродействия, большое энергопотребление. Процесс регенерации реализуется специальным контроллером, установленным наматеринской плате или в центральном процессоре. DRAM обычно используется в качестве оперативной памяти (ОЗУ) компьютеров. Ферромагнитная — представляет собой матрицу из проводников, на пересечении которых находятся кольца или биаксы, изготовленные из ферромагнитных материалов. Достоинства — устойчивость к радиации, сохранение информации при выключении питания; недостатки — малая ёмкость, большой вес, стирание информации при каждом чтении. В настоящее время в таком, собранном из дискретных компонентов виде, не применяется. Однако к 2003 году появилась магнитная память MRAM в интегральном исполнении. Сочетая скорость SRAM и возможность хранения информации при отключённом питании, MRAM является перспективной заменой используемым ныне типам ROM и RAM. Однако она на сегодняшний день (2006 год) приблизительно вдвое дороже микросхем SRAM (при той же ёмкости и габаритах).
Варианты конструкции модулей RAM, используемые в качестве ОЗУ компьютеров. Сверху вниз: DIP, SIPP, SIMM 30 pin, SIMM 72 pin, DIMM, DDR DIMM
Постоянное запоминающее устройство ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять. В ПЗУ находятся: · программа управления работой процессора; · программа запуска и останова компьютера; · программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков; · программы управления дисплеем, клавиатурой, принтером, внешней памятью; · информация о том, где на диске находится операционная система. ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется. Оперативное запоминающее устройство Оперативная память (также оперативное запоминающее устройство, ОЗУ) - предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций (рисунок 19). Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.
ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера. Рисунок 19 - Внешний вид оперативной памяти
SRAM - ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места. DRAM - более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени - для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени. Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.
DIMM (англ. D ual I n-line M emory M odule, двухсторонний модуль памяти) — форм-фактор модулей памяти DRAM. Данный форм-фактор пришёл на смену форм-фактору SIMM. Основным отличием DIMM от предшественника является то, что контакты, расположенные на разных сторонах модуля, являются независимыми, в отличие от SIMM, где симметричные контакты, расположенные на разных сторонах модуля, замкнуты между собой и передают одни и те же сигналы. SIMM (англ. Single In-line Memory Module, односторонний модуль памяти) — модули памяти с однорядным расположением контактов, широко применявшиеся в компьютерных системах в 1990-е годы. SDRAM (англ. S ynchronous D ynamic R andom A ccess M emory — синхронная динамическая память с произвольным доступом) — типзапоминающего устройства, использующегося в компьютере в качестве ОЗУ. В отличие от других типов DRAM, использовавших асинхронный обмен данными, ответ на поступивший в устройство управляющий сигнал возвращается не сразу, а лишь при получении следующего тактового сигнала. Тактовые сигналы позволяют организовать работу SDRAM в виде конечного автомата, исполняющего входящие команды. При этом входящие команды могут поступать в виде непрерывного потока, не дожидаясь, пока будет завершено выполнение предыдущих инструкций (конвейерная обработка): сразу после команды записи может поступить следующая команда, не ожидая, когда данные окажутся записаны. Поступление команды чтения приведёт к тому, что на выходе данные появятся спустя некоторое количество тактов — это время называется задержкой (англ. SDRAM latency) и является одной из важных характеристик данного типа устройств. Первый стандарт SDRAM с появлением последующих стандартов стал именоваться SDR (Single Data Rate — в отличие от Double Data Rate). За один такт принималась одна управляющая команда и передавалось одно слово данных. Типичными тактовыми частотами были 66, 100 и 133 МГц. Чип SDR SDRAM 64Мб DDR SDRAM (от англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) — тип компьютерной памяти, используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM. При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только пофронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM).
Компьютерные накопители на основе микросхем флэш-памяти, получившие название SSD (Solid State Drive, то есть " твёрдотельный привод"), появились на массовым рынке всего лишь в середине " нулевых" годов. При этом их самые неприятные недостатки были сведены к минимуму лишь к 2010 году, когда и начался бум " твёрдотельников": они стали надёжнее, их ёмкость принялась плавно расти, а цена - быстро падать. К несомненным преимуществам SSD-накопителей перед винчестерами обычно относят в 2-2, 5 раза большую скорость чтения (до 250-300 Мб/с), на порядок меньшее среднее время доступа (0, 12-0, 18 мс против 14-15 мс), низкое энергопотреблением, полную бесшумность, высокую надёжность и устойчивость к механическим воздействиям благодаря полному отсутствию движущихся частей. Однако у SSD имеются и недостатки, обусловленные самой конструкцией флэш-памяти. Прежде всего, это ограниченное количество циклов записи/стирания, связанное с физическим износом: постоянное воздействие высокого напряжения на диэлектрик, изолирующий плавающий затвор, вызывает изменения его структуры и приводит к " пробою", то есть невозможности удерживать заряд. Это означает выход из строя ячейки, которая утрачивает способность принимать значения " 0" или " 1", оставаясь постоянно в некотором стабильном состоянии. Среднее число циклов записи-стирания составляет порядка 10 тысяч у массовых моделей с ячейками типа SLC и до 100 тысяч у дорогих MLC-накопителей (подробнее о них - см. здесь). Второй " врождённый" недостаток заключается в том, что для записи на SSD-накопитель требуется приложение относительно высокого напряжения от 10 до 20 В, которое необходимо для преодоления слоя диэлектрика. Разумеется, это не лучшим образом сказывается на энергопотреблении, особенно в портативных устройствах, питающихся от аккумуляторов. В свою очередь, при увеличении плотности ячеек для повышения плотности записи неизбежно уменьшается толщина диэлектрика, что позволяет снизить напряжение записи, - но в таком случае проблема износа становится ещё актуальнее. И, наконец, быстродействие SSD-накопителей вовсе не настолько высоко, как может показаться. Оно впечатляет, если сравнивать с обычными жёсткими дисками, но даже не самая скоростная современная оперативная память опережает " твёрдотельники" по производительности и времени доступа как минимум в 20-25 раз. Есть два способа, которые позволяют преодолеть ограничения по быстродействию, сроку службы и плотности записи. Можно совершенствовать применяемые материалы либо взять за основу конструкции накопителя существенно иной принцип хранения информации.
Работы в первом направлении ведутся давно различными производителями памяти, но все они пока упираются в дороговизну и неотработанность технологии. К примеру, технология SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) отличается от классической флэш-памяти тем, что плавающий затвор ячейки выполнен не из поликристаллического кремния, а из нитрида кремния (Si3N4), имеющего более однородную молекулярную структуру и потому способного лучше удерживать заряд. При этом слой диэлектрика может быть значительно тоньше, а напряжение записи - в несколько раз меньше. В современных образцах памяти SONOS, продвигаемых компаниями Philips, Spansion, Infineon и Qimonda, напряжение записи составляет от 5 до 8 В, а теоретическое число циклов записи/стирания достигает 100 миллионов, что в 1000-10000 раз выше, чем у обычной SSD. Гораздо интереснее и многообразнее альтернативные технологии, причём некоторые из них могут появиться на массовом рынке значительно раньше " улучшенной" флэш-памяти. Одна из самых необычных технологий - PRAM (Phase change Random Access Memory), то есть память с произвольным доступом на основе фазового перехода. В PRAM применяется тот же самый принцип, который используется в перезаписываемых оптических дисках CD-RW и DVD-/+RW. Носителем информации служит специальный материал, способный под воздействием температуры принимать одно из двух состояний: кристаллическое или аморфное. Однако в отличие от дисков, где имеют значение оптические характеристики материала в этих состояниях, здесь играет роль электрическое сопротивление, которое в кристаллическом состоянии слабое (логическая единица), а в аморфном - высокое (логический ноль).
Запись информации в PRAM осуществляется путём нагрева ячеек, а считывание - посредством измерения их сопротивления. Среди достоинств этой технологии - возможность записи информации без предварительного стирания (совсем как на " болванках", где для перезаписи достаточно стереть содержание, после чего можно записывать " поверх" старых данных), причём скорость записи может в сто раз превышать аналогичный показатель SSD-накопителей на флэш-памяти. Микросхемы PRAM небольшого объёма (до нескольких десятков мегабайт) уже серийно производятся компаниями Hynix, Intel и Samsung и применяются в смартфонах и планшетах. Ещё один альтернативный тип памяти, мелкосерийный выпуск которой уже начался, называется MRAM (Magnetoresistive random-access memory - магниторезистивная память с произвольным доступом). Основой ячейки памяти MRAM выступает магнитный туннельный переход, состоящий из двух магнитных слоёв, разделённых сверхтонким диэлектриком. Один из двух слоёв имеет фиксированный вектор магнитного поля, а у второго направление вектора намагниченности может изменяться под воздействием внешнего магнитного поля. Если векторы взаимно противоположны, то электрическое сопротивление ячейки высокое (логический ноль), если же они ориентированы в одном направлении, то сопротивление низкое (логическая единица).
Благодаря тому, что данные записываются в результате намагниченности, а не за счёт электрического заряда, они могут храниться более десяти лет без питающего напряжения, при этом отсутствует эффект износа, а число циклов записи/стирания практически не ограничено (более 1016). Время доступа MRAM составляет порядка наносекунды, а скорость записи примерно в тысячу раз превышает возможности флэш-памяти. Магниторезистивная память уже порядка десяти лет (!) применяется в некоторых областях, например в космонавтике, но в ближайшее время вероятно её появление на потребительском рынке. В продвижении MRAM заинтересованы такие крупные игроки, как Hynix, IBM, NEC и Toshiba. Интересные варианты долговременной памяти возможны и на молекулярном уровне. К примеру, память FeRAM (Ferroelectric RAM - ферроэлектрическая, или сегнетоэлектрическая, память с произвольным доступом) основана на возможности изменять распределение (поляризацию) атомов в ферроэлектрических материалах за счёт приложения внешнего электрического поля. В отечественной литературе принят термин " сегнетоэлектрик", по названию первого материала, где был открыт этот эффект, - сегнетовой соли.
Принцип работы FeRAM заключается в том, что при подаче напряжения на ферроэлектрик атомы в этом материале смещаются вверх или вниз, и изменяется электрическая проводимость, сохраняющаяся и после отключения тока. Чтение данных при этом производится довольно непривычным способом: управляющий транзистор подаёт напряжение, переводя ячейку в измерительное состояние " 0". Если ячейка уже содержит логический " 0", то сигнал не изменяется, если же в ячейке записана " 1", то в результате смены поляризации на выходе возникнет короткий импульс, который и будет означать " 1". Среди преимуществ FeRAM - практически не ограниченное число циклов перезаписи (более 1016), высокая скорость записи (150 нс по сравнению с 10 000 нс - 10 мс - для флэш-памяти) и низкое энергопотребление. Главные недостатки - низкая плотность записи и, в результате, слишком высокая цена хранения информации. В настоящее время чипы FeRAM небольшой ёмкости применяются преимущественно в лабораторном и медицинском оборудовании, где требуется максимально быстрая фиксация данных и перезапись без физического износа носителя. Память века нанотехнологий - CBRAM (Conductive-Bridging RAM - память с произвольным доступом на основе проводящего моста). Здесь в буквальном смысле слова используется нанотрубка, формирующаяся при подаче напряжения в твёрдотельном электролите-диэлектрике между двумя электродами, один из которых изготовлен из электрохимически инертного материала (например, вольфрама), а другой, напротив, из активного (например, из меди или серебра). Нанотрубка, " пробившая" диэлектрик, снижает сопротивление и записывает логическую единицу, в противном случае ячейка хранит ноль. Для стирания единицы ток пропускается между электродами в обратном направлении, и нанотрубка разрушается. Существует ещё множество экспериментальных технологий накопителей будущего - Nano-RAM, Millipede, Racetrack, ReRAM и другие. 3.Классификация интерфейсов накопителей информации
Интерфейсы накопителей связывают сам накопитель с контроллером, подключенным к какой-либо системной шине или интерфейсу передачи данных. Для подключения дисковых, ленточных и других накопителей в настоящее время применяются преимущественно параллельные интерфейсы.
ATA-1 ATA-1 IDE (АТА-1 ИДЕ), исторически первый IDE интерфейс для жестких дисков с поддержкой 2-х устройств на шине. Режимы PIO и DMA
ATA-3 ATA-3 EIDE (Ultra DMA), АТА-3 ЕИДЕ УльтраДМА. Модификации UltraATA, ATA/100, UltraDMA/66, SerialATA (SATA, САТА). Система SMART
EIDE Интерфейс EIDE, ЕИДЕ (ATA-2). Расширение ATAPI
|