Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Глава 32 Строение Пространства – Времени
«Действие есть кривизна Мира» Павел Дмитриевич Успенский, 1911 год
Мы уже предполагали аналогии квантового строения микромира и макромира, при определенных условиях. Далее, будет показаны законы резонансного строения нашего мира, на конкретных примерах. Предлагаемые расчеты и выводы впервые были найдены автором данной книги в 1991 году, и доложены научному сообществу на международной конференции «Новые идеи в Естествознании», июнь, 1996 год, Санкт – Петербург. Эпиграфом к данной главе выбрана фраза известного русского философа Павла Дмитриевича Успенского, из его известной книги «Новая модель Вселенной», опубликованной в 1911 году [83]. Смысл этой фразы заключается в том, что «действие» – любой процесс во времени, характеризуется геометрическим искривлением нашего мира трехмерных объектов. Любое «действие», например, процесс перемещения тела или химическая реакция, происходит по оси времени, по траектории определенной кривизны. Кривизна, в данном случае, уже четырехмерный геометрический параметр, характеристика скорости данного процесса, темпа изменений и т. д. Успенский сделал еще одно важное замечание о строении пространства и времени. Наш разум пытается понять окружающую реальность в пределах своих возможностей, поэтому разделяет все объекты и события по пространству или по времени. Однако, реальность не такая, как кажется нам. Мы видим лишь ее проекцию на данный момент нашего существования и последовательность проекций. Обычно мы считаем время четвертным измерением, и употребляем термин «четырехмерный объект» для описания процессов. Однако, имеет смысл кратко дополнить «общепринятые» взгляды на структуру окружающего нас пространства и времени. Прежде всего, напомню, что не имеет смысла рассматривать абстрактное пространство – время, так как его параметры всегда связаны с материей. Абстрактно, мы можем моделировать любое пространство, но в реальном мире, можно говорить только о пространстве – времени некоторого объекта. Можно сказать, что параметры материального объекта, который представляет собой определенный эфиродинамический процесс, задают параметры пространства существования данного объекта. Отсюда, объекты могут иметь разную размерность. До этого момента, мы рассматривали привычные нам понятия о «времени», как о четвертой координате пространства – времени. Обычно, еще в школе, нам преподают систему декартовых координат, как удобный способ проектирования объектов и задания координат в пространстве. Удобство декартовой системы прямоугольных координат заключается в том, что в ней используется понятие «высоты» предмета, как размер вдоль линии действия силы тяжести. Данная система основана на ортогональной группе векторов, и она включает три положительных оси и три отрицательных, итого шесть осей координат. Нам говорят, что их всего три, поэтому время, как параметр изменения какой‑ то функции, задают, как четвертую координату. Это уже логическая ошибка, по порядку осей, время есть седьмая ось в данной системе. Учитывая «плюс» и «минус» время, всего получим восемь осей координат. Вопрос о системе координат, или о строении воображаемого пространства, можно развивать в зависимости от фантазии автора, например, в геометрии Лобачевского, даже параллельные прямые могут пересекаться, в определенном случае. Нас сейчас интересует система взглядов на строение пространства‑ времени, которая отражает реальную геометрию нашего мира материальных вещей и процессов. Для ответа на это вопрос, обратимся к натуральным материальным системам, например, к строению кристаллов. Плоский мир хорошо изучен в обычной геометрии, в нем элементарной фигурой является треугольник, а положение точки на плоскости однозначно задается тремя координатами, как расстояния «на плоской местности» до трех «точек отсчета». Данный метод практически применяется в методах радиопеленгации, то есть, для поиска источника радиоизлучения. Для объемного пространства, метод аналогичен, но использует четыре точки отсчета. Бакминстер Фуллер показал, что естественной системой координат в пространстве является тетраэдрическая система. Развитием данной концепции, в настоящее время, занимается Джозеф Хасслбергер, сайт www.hasslberger.com. Реальное строение пространства отражено, например, в строении кристалла алмаза, по связям атомов углерода. В пространстве, элементарной геометрической фигурой является тетраэдр, а положение точки внутри области данного тетраэдра однозначно задается четырьмя координатами, как показано на рис. 142. Здесь координаты в пространстве – это расстояния до четырех точек отсчета.
Рис. 142. Тетраэдрическая система координат Время – параметр, описывающий скорость изменения какой‑ то величины. В геометрии, опирающейся на тетраэдрическую систему координат, мы можем считать время пятым измерением. Это координата измеряется, как интервал от какого‑ то события (минус‑ время), или интервал времени до какого‑ то события в будущем (плюс‑ время). Учитывая, что координата времени имеет относительное направление «вперед» и «назад», мы можем сформулировать понятие о шестимерном пространстве‑ времени, в котором четыре координаты тетраэдрической системы задают положение объекта в пространстве, и еще две координаты описывают движение объекта по оси времени, в сторону увеличения плотности энергии или в сторону ее уменьшения. За положительное направление оси времени, как мы уже отмечали, целесообразно принять направление уменьшение плотности эфирной среды, поскольку это направление развития событий соответствует натуральному процессу расширения Вселенной и движения Солнечной системы в рукаве Галактики Млечный Путь от центра к периферии. Элементарной пятимерной фигурой, при циклической функции времени, можно считать тетраэдр переменного объема, циклично сжимающийся в центральную точку, и возвращающийся к прежним размерам. Очевидно, что такая модель отражает реальные процессы изменения объемной плотности энергии в пространстве. В 1991 году, в ходе теоретических исследований, автором данной книги была найдена связь параметров элементарных частиц и размеров планеты, и сделан вывод о наличии параметрического резонанса в пространстве‑ времени, обуславливающего данную связь. На основе расчета четырехмерной кривизны пространства элементарных частиц материи, а также таких элементов живой материи, как молекулы ДНК, было доказано, что природные (натуральные) объекты характеризуются целочисленной величиной кривизны их резонатора, так как число волн материи в пространственном резонаторе может быть только целым числом. Справедливость волновой теории материи сегодня широко признается. На первый взгляд, теория кажется привлекательной, но она имеет и серьезные недостатки: суперпозиции волн обычно являются нестабильными, и должны распадаться. Для решения данной проблемы достаточно предположить, что частица, имеющая массу, может быть представлена, как стабильная динамическая суперпозиция волновых пакетов, существующая в особых резонансных условиях. Данная концепция может быть использована как прикладной инструмент для расчета преобразований «масса‑ энергия» и «энергия‑ масса», который найдет свое применения в энергетике будущего, и при создании новых способов перемещения в пространстве и времени. На основании данной концепции и идей о квантованности пространства – времени, был сделан расчет точного значения скорости света в вакууме. Читателей, не интересующихся расчетами, не затруднит перелистать несколько страниц, и сразу перейти к рассмотрению экспериментальной части. Остальных могу уверить в том, что формулы элементарны, а выводы из расчетов весьма полезны. Для начала, определимся с понятием «время». Рассмотрим движение точки по замкнутой траектории. Это движение происходит в динамическом одномерном пространстве‑ времени линии. Если линия замкнута, то можно говорить о некотором резонансном явлении, параметром которого является радиус R.Это процесс, имеющий некоторый период. Кривизна здесь определяется как 1/R и обозначается символом ρ: ρ 1 = 1/R [1/m] (F.12) где R есть радиус, ρ 1 – классическая линейная кривизна. Павел Дмитриевич Успенский определял «время», как такое направление движения линии, плоскости или объекта, которое в объекте не содержится[83]. Например, процесс прямолинейного движения всей линии в пространстве, в направлении, которое в ней не содержится, смещает ее вдоль поверхности динамического двумерного пространства. например, плоскости. Если эта поверхность не является плоской, имеет кривизну и замкнута, то она образует сферу, и ее цикличным резонансным параметром является двумерная кривизна: ρ 2 = 2/R [1/m] (F.13) Здесь ρ 2 – это классическое понятие кривизны сферы, применяемое в современной геометрии. В нашем понимании, этот параметр характеризует скорость процесса существования динамического двумерного пространства, и при цикличности данного процесса, кривизна соответствует периоду повторения положения точки, при ее движении по поверхности сферы. Подобным образом определяется и кривизна трехмерного пространства, хотя этого понятия нет в учебниках геометрии: ρ 3 = 3/R [1/m] (F.14) Трехмерная кривизна – это параметр процесса динамического изменения двумерных объектов, движения, происходящего в трехмерном пространстве. В результате таких процессов, например, циклично сжимающаяся и расширяющаяся поверхность сферы формирует шар – динамический трехмерныш объект, имеющий некоторую плотность. Очевидно, что чем больше трехмерная кривизна, тем выше частота и скорость процесса сжатия – расширения сферы. При этом, в проекции на экваториальное сечение шара, мы получим динамический двумерный объект – круг, как циклический процесс сжатия окружности в точку и ее расширения. Все эти процессы мы можем моделировать в обычной геометрии, а более интересным для нас является анализ понятия 4‑ мерной кривизны. Еще раз напомню, что время, как радиус одномерного пространства, это такое направление, которое находится вне данного пространства линии. Однако, проекция всегда есть. Радиус окружности, при проекции на линию окружности дает точку. Новое высшее измерение для трехмерного мира, новое направление, имеет проекцию в нашем мире, как данный момент времени, соответствующий определенной плотности энергии. Несколько слов о «динамических многомерных объектах». Сфера изменяемого радиуса формирует «динамический шар», как элементарный трехмерный объект. Его проекция на плоскость является «динамическим кругом»: площадь ее проекции на плоскость изменяется от нуля (точки) до некоторой величины. Исходя их этого представления, мы можем сказать, что 4‑ кривизна объектов создается как изменение 3‑ мерной структуры (шара) в следующем измерении. Таким образом, мы готовы перейти к рассуждениям о динамическом четырехмерном объекте, хотя нарисовать четырехмерный радиус кривизны шара (направление искривления шара) мы не можем, так как он лежит вне трехмерного пространства. Несомненной характеристикой 4‑ мерного объекта, с нашей точки зрения, является изотропное синхронное движение всех точек 3‑ мерного объекта. Это и есть его проекция на наше привычное трехмерное пространство, которая будет выглядеть в виде «динамического шара», объемная плотность энергии которого является функцией времени, и меняется от нуля до некоторой величины. Перейдем к вопросу о сохранении энергии, в данном контексте. Допустим, что размеры объектов связаны с величиной их энергии. Сечение шара в области экватора имеет максимальную площадь. Сечение в другом месте имеет меньшие размеры. Изучая свойства шара (трехмерного пространства), но, находясь в рамках плоского мира, можно сделать вывод о том, что площадь сечения может меняться от нуля до максимума. Это верно, но это не означает, что сам шар изменяет свой радиус, ведь шар может иметь постоянные параметры, но двигаться через плоскость двухмерного мира, создавая «динамический круг» в проекции. Когда его размеры стремятся к нулю, то это не означает уменьшение размеров самого шара и изменения связанной с ним энергии. Аналогично, допустим, что мы наблюдаем объемные изменения плотности энергии, как динамическую проекцию четырехмерного объекта на наше пространство. Цикл четырехмерного движения с нашей точки зрения выглядит, как появление в пустом месте трехмерного объекта (шара) с постепенно увеличивающимся объемом, и «появлением энергии из пустоты». После достижения максимального размера, объект начинает уменьшать свой объем до нуля, при этом его материя и энергия исчезает! Это противоречит нашему здравому смыслу, так как материальные объекты не могут произвольно менять свои физические параметры, а «энергия не появляется из ниоткуда и не исчезает в никуда». Мы, обычно, не наблюдаем такие процессы в привычном макромире, но это возможно, если через трехмерное сечение нашего пространства проходит четырехмерный объект. Для мира элементарных частиц, представленных в квантовой физике, как волны материи де Бройля, предлагаемая концепция может быть очень полезна. Волновая теория материи разработана в деталях, но она не отвечает на вопрос о сохранении энергии частицы в нулевой точке волнового процесса изменения функции плотности вероятности. Можно сказать, что четырехмерная динамика (хронодинамика) позволяет придать квантовой теории больше физического смысла. Итак, параметром, характеризующим скорость процессов в 3‑ мерных объектах является время, то есть, их 4‑ мерная кривизна: ρ 4 = 4/R [1/m] (F.15) Процессом, который развивается в трехмерных объектах одновременно по всем измерениям, можно считать изменение объемной плотности энергии. Данное понимание природы времени позволяет предложить некоторое методы создания локального темпа хода времени. Технические средства могут быть различными, но в любом случае, необходимо изменять плотность энергии в пространстве. Для одномерного пространства, изменение линейной плотности энергии может быть реализовано, как изменения плотности электрического тока. Аналогично, изменяя объемную плотность энергии, мы можем создавать изменения величины 4‑ мерной кривизны пространства. Любое действие (процесс) описывается в нашем мире некоторой кривизной, имеющей некоторое численное значение, и характеризующей скорость изменения плотности энергии. Далее будет показано, что это число целое, при резонансных условиях. Отсюда возникают выводы о квантованности пространства и времени. Герман Вейль сформулировал данный вопрос следующим образом: «At any conditions the action is just the number» – при любых условиях, действие есть просто число [84].
|