Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интегрированные или федеративные системы и мультибазы данных
Направление интегрированных или федеративных систем неоднородных БД и мульти-БД появилось в связи с необходимостью комплексирования систем БД, основанных на разных моделях данных и управляемых разными СУБД. Основной задачей интеграции неоднородных БД является предоставление пользователям интегрированной системы глобальной схемы БД, представленной в некоторой модели данных, и автоматическое преобразование операторов манипулирования БД глобального уровня в операторы, понятные соответствующим локальным СУБД. В теоретическом плане проблемы преобразования решены, имеются реализации. При строгой интеграции неоднородных БД локальные системы БД утрачивают свою автономность. После включения локальной БД в федеративную систему все дальнейшие действия с ней, включая администрирование, должны вестись на глобальном уровне. Поскольку пользователи часто не соглашаются утрачивать локальную автономность, желая тем не менее иметь возможность работать со всеми локальными СУБД на одном языке и формулировать запросы с одновременным указанием разных локальных БД, развивается направление мульти-БД. В системах мульти-БД не поддерживается глобальная схема интегрированной БД и применяются специальные способы именования для доступа к объектам локальных БД. Как правило, в таких системах на глобальном уровне допускается только выборка данных. Это позволяет сохранить автономность локальных БД. Как правило, интегрировать приходится неоднородные БД, распределенные в вычислительной сети. Это в значительной степени усложняет реализацию. Дополнительно к собственным проблемам интеграции приходится решать все проблемы, присущие распределенным СУБД: управление глобальными транзакциями, сетевую оптимизацию запросов и т.д. Очень трудно добиться эффективности. Как правило, для внешнего представления интегрированных и мульти-БД используется (иногда расширенная) реляционная модель данных. В последнее время все чаще предлагается использовать объектно-ориентированные модели, но на практике пока основой является реляционная модель. Поэтому, в частности, включение в интегрированную систему локальной реляционной СУБД существенно проще и эффективнее, чем включение СУБД, основанной на другой модели данных.
Реляционный язык SQL.
Язык для взаимодействия с БД SQL появился в середине 70-х и был разработан в рамках проекта экспериментальной реляционной СУБД System R. Исходное название языка SEQUEL (Structered English Query Language) только частично отражает суть этого языка. Конечно, язык был ориентирован главным образом на удобную и понятную пользователям формулировку запросов к реляционной БД, но на самом деле уже являлся полным языком БД, содержащим помимо операторов формулирования запросов и манипулирования БД средства определения и манипулирования схемой БД; определения ограничений целостности и триггеров; представлений БД; возможности определения структур физического уровня, поддерживающих эффективное выполнение запросов; авторизации доступа к отношениям и их полям; точек сохранения транзакции и откатов. В языке отсутствовали средства синхронизации доступа к объектам БД со стороны параллельно выполняемых транзакций: с самого начала предполагалось, что необходимую синхронизацию неявно выполняет СУБД. SQL представляет собой некоторую комбинацию реляционного исчисления кортежей и реляционной алгебры, причем до сих пор нет общего согласия, к какому из классических языков он ближе. При этом возможности SQL шире, чем у этих базовых реляционных языков. В настоящее время SQL реализован практически во всех коммерческих реляиционных СУБД, все фирмы провозглашают соответствие своей реализации стандарту SQL, и на самом деле реализованные диалекты SQL очень близки. Рассмотрим основные особенности стандарта языка SQL 1989 г
***** Типы данных SQL
В языке SQL/89 поддерживаются следующие типы данных: CHARACTER, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE PRECISION. Эти типы данных классифицируются на типы строк символов, точных чисел и приблизительных чисел. К первому классу относится CHARACTER. Спецификатор типа имеет вид CHARACTER (lenght), где lenght задает длину строк данного типа. Заметим, что в SQL/89 нет типа строк переменного размера, хотя во многих реализациях они допускаются. Литеральные строки символов изображаются в виде 'последовательность символов' (например, 'example'). Представителями второго класса типов являются NUMERIC, DECIMAL (или DEC), INTEGER (или INT) и SMALLINT. Спецификатор типа NUMERIC имеет вид NUMERIC [(precision [, scale]). Специфицируются точные числа, представляемые с точностью precision и масштабом scale. Спецификатор типа DECIMAL (или DEC) имеет вид DECIMAL [(precision [, scale]). Наконец, в классу типов данных приблизительных чисел относятся типы FLOAT, REAL и DOUBLE PRECISION. Спецификатор типа FLOAT имеет вид FLOAT [(precision)]. Большинстве реализаций SQL поддерживаются некоторые дополнительные типы данных, например, DATE, TIME, INTERVAL, MONEY.
*****Определение таблицы
Оператор определения таблицы имеет следующий синтаксис: < table definition>:: = CREATE TABLE < table name> (< table element> [{, < table element> }...]) < table element>:: = < column definition> | < table constraint definition> Кроме имени таблицы, в операторе специфицируется список элементов таблицы, каждый из которых служит либо для определения столбца, либо для определения ограничения целостности определяемой таблицы. Требуется наличие хотя бы одного определения столбца. Оператор CREATE TABLE определяет так называемую базовую таблицу, т.е. реальное хранилище данных. Для определения столбцов таблицы и ограничений целостности используются специальные операторы, которые должны быть вложены в оператор определения таблицы. ***** Определение столбца Оператор определения столбца описывается следующими синтаксическими правилами: < column definition>:: = < column name> < data type> [< default clause> ] [< column constraint>...] < default clause>:: = DEFAULT { < literal> | USER | NULL } < column constraint>:: = NOT NULL [< unique specification> ] | < references specification> | CHECK (< search condition>) Как видно, кроме обязательной части, в которой определяется имя столбца и его тип данных, определение столбца может содержать два необязательных раздела: раздел значения столбца по умолчанию и раздел ограничений целостности столбца. В разделе значения по умолчанию указывается значение, которое должно быть помещено с строку, заносимую в данную таблицу, если значение данного столбца явно не указано. Значение по умолчанию может быть указано в виде литеральной константы с типом, соответствующим типу столбца; путем задания ключевого слова USER, которому при выполнении оператора занесения строки соответствует символьная строка, содержащая имя текущего пользователя (в этом случае столбец должен иметь тип символьных строк); или путем задания ключевого слова NULL, означающего, что значением по умолчанию является неопределенное значение. Если значение столбца по умолчанию не специфицировано, и в разделе ограничений целостности столбца указано NOT NULL, то попытка занести в таблицу строку с неспецифицированным значением данного столбца приведет к ошибке. Указание в разделе ограничений целостности NOT NULL приводит к неявному порождению проверочного ограничения целостности для всей таблицы (см. следующий подраздел) " CHECK (C IS NOT NULL)" (где C - имя данного столбца). Если ограничение NOT NULL не указано, и раздел умолчаний отсутствует, то неявно порождается раздел умолчаний DEFAULT NULL. Если указана спецификация уникальности, то порождается соответствующая спецификация уникальности для таблицы. Если в разделе ограничений целостности указано ограничение по ссылкам данного столбца (< reference specification>), то порождается соответствующее определение ограничения по ссылкам для таблицы: FOREIGN KEY(C) < reference specification>. Наконец, если указано проверочное ограничение столбца, то условие поиска этого ограничения должно ссылаться только на данный столбец, и неявно порождается соответствующее проверочное ограничение для всей таблицы. ***** Определение ограничений целостности таблицы Ограничения целостности таблицы обладают следующим синтаксисом: < table constraint definition>:: = < unique constraint definition> | < referential constraint definition> | < check constraint definition> < unique constraint definition>:: = < unique specification> (< unique column list>) < unique specification>:: = UNIQUE | PRIMARY KEY < unique column list>:: = < column name> [{, < column name> }...] < referential constraint definition>:: = FOREIGN KEY (< referencing columns>) < references specification> < references specification>:: = REFERENCES < referenced table and columns> < referencing columns>:: = < reference column list> < referenced table and columns>:: = < table name> [(< reference column list>)] < reference column list>:: = < column name> [{, < column name> }...] < check constraint definition>:: = CHECK (< search condition>) Для одной таблицы может быть задано несколько ограничений целостности, в том числе те, которые неявно порождаются ограничениями целостности столбцов. Стандарт SQL/89 устанавливает, что ограничения таблицы фактически проверяются при выполнении каждого оператора SQL. Замечание: Наличие правильно подобранного набора ограничений БД очень важно для надежного функционирования прикладной информационной системы. Вместе с тем, в некоторых СУБД ограничения целостности практически не поддерживаются. Поэтому при проектировании прикладной системы необходимо принять решение о том, что более существенно: рассчитывать на поддержку ограничений целостности, но ограничить набор возможных СУБД, или отказаться от их использования на уровне SQL, сохранив возможность использования не самых современных СУБД.
*****Определение представлений
Механизм представлений (view) является мощным средством языка SQL, позволяющим скрыть реальную структуру БД от некоторых пользователей за счет определения представления БД, которое реально является некоторым хранимым в БД запросом с именованными столбцами, а для пользователя ничем не отличается от базовой таблицы БД (с учетом технических ограничений). Любая реализация должна гарантировать, что состояние представляемой таблицы точно соответствует состоянию базовых таблиц, на которых определено представление. Обычно вычисление представляемой таблицы (материализация соответствующего запроса) производится каждый раз при использовании представления. В стандарте SQL/89 оператор определения представления имеет следующий синтаксис: < view definition>:: = CREATE VIEW < table name> [(< view column list>)] AS < query specification> [WITH CHECK OPTION] < view column list>:: = < column name> [{, < column name> }...] Определяемая представляемая таблица V является изменяемой (т.е. по отношению к V можно использовать операторы DELETE и UPDATE) в том и только в том случае, если выполняются следующие условия для спецификации запроса: В списке выборки не указано ключевое слово DISTINCT; Каждое арифметическое выражение в списке выборки представляет собой одну спецификацию столбца, и спецификация одного столбца не появляется более одного раза; В разделе FROM указана только одна таблица, являющаяся либо базовой таблицей, либо изменяемой представляемой таблицей; В условии выборки раздела WHERE не используются подзапросы; В табличном выражении отсутствуют разделы GROUP BY и HAVING. Замечание: Эти ограничения являются очень сильными. В реализациях они могут быть ослаблены. Но если стремиться к мобильности, не следует пользоваться расширенными возможностями. Если в списке выборки спецификации запроса имеется хотя бы одно арифметическое выражение, состоящее не из одной спецификации столбца, или если одно имя столбца участвует в списке выборки более одного раза, определение представления должно содержать список имен столбцов представляемой таблицы. Более просто, нужно явно именовать столбцы представляемой таблицы, если эти имена не наследуются от столбцов таблиц раздела FROM спецификации запроса. Требование WITH CHECK OPTION в определении представления имеет смысл только в случае определения изменяемой представляемой таблицы, которая определяется спецификацией запроса, содержащей раздел WHERE. При наличии этого требования не допускаются изменения представляемой таблицы, которые приводят к появлению в базовых таблиц строк, не видимых в представляемой таблице (т.е. таких строк, которые не удовлетворяют условию поиска раздела WHERE спецификации запроса). Если WITH CHECK OPTION в определении представления отсутствует, такой контроль не производится.
***** Определение привилегий
В соответствии с идеологией языка SQL контроль прав доступа данного пользователя к таблицам БД производится на основе механизма привилегий. Фактически, этот механизм состоит в том, что для выполнения любого действия над таблицей пользователь должен обладать соответствующей привилегией (реально все возможные действия описываются фиксированным стандартным набором привилегий). Пользователь, создавший таблицу, автоматически становится владельцем всех возможных привилегий на выполнение операций над этой таблицей. В число этих привилегий входит привилегия на передачу всех или некоторых привилегий по отношению к данной таблице другому пользователю, включая привилегию на передачу привилегий. Иногда поддерживается и обратная операция изъятия привилегий от пользователя, ранее их получившего. В SQL/89 определяется упрощенная схема механизма привилегий. Во-первых, " раздача" привилегий возможна только при определении таблицы. Во-вторых, пользователь, получивший некоторые привилегии от других пользователей, может передать их дальше только при определении схемы. Определение привилегий производится в следующем синтаксисе: < privilege definition>:: = GRANT < privileges> ON < table name> TO < grantee> [{, < grantee> }...] [WITH GRANT OPTION] < privileges>:: = ALL PRIVILEGES | < action> [{, < action> }...] < action>:: = SELECT | INSERT | DELETE | UPDATE [(< grant column list>)] | REFERENCES [(< grant column list> ] < grant column list>:: = < column name> [{, < column name> }...] < grantee>:: = PUBLIC | < authorization identifier> Привилегией REFERENCES по отношению к указанным столбцам таблицы T1 необходимо обладать, чтобы иметь возможность при определении таблицы T определить ограничение по ссылкам между этой таблицей и существующей к этому моменту таблицей T1.
***** Структура запросов
Для того, чтобы можно было более или менее точно рассказать про структуру запросов в стандарте SQL/89, необходимо начать со сводки синтаксических правил: < cursor specification>:: = < query expression> [< order by clause> ] < query expression>:: = < query term> | < query expression> UNION [ALL] < query term> < query term>:: = < query specification> | (< query expression>) < query specification>:: = (SELECT [ALL | DISTINCT] < select list> < table expression>) < select statement>:: = SELECT [ALL | DISTINCT] < select list> INTO < select target list> < table expression> < subquery>:: = (SELECT [ALL | DISTINCT] < result specification> < table expression> < table expression>:: = < from clause> [< where clause> ] [< group by clause> ] [< having clause> ] Язык допускает три типа синтаксических конструкций, начинающихся с ключевого слова SELECT: спецификация курсора (cursor specification), оператор выборки (select statement) и подзапрос (subquery). Основой всех них является синтаксическая конструкция " табличное выражение (table expression)". Семантика табличного выражения состоит в том, что на основе последовательного применения разделов from, where, group by и having из заданных в разделе from таблиц строится некоторая новая результирующая таблица, порядок следования строк которой не определен и среди строк которой могут находиться дубликаты (т.е. в общем случае таблица-результат табличного выражения является мультимножеством строк). На самом деле именно структура табличного выражения наибольшим образом характеризует структуру запросов языка SQL/89. Мы рассмотрим ниже структуру и смысл разделов табличного выражения ниже, но до этого немного подробнее обсудим три упомянутые конструкции, включающие табличные выражения.
|