Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
А.Эйнштейн и относительность пространства и времени. Измерение времени и длины в разных системах отсчета. Интервал
Теория относительности включает в себя две генетически связанные теории: специальную теорию относительности (СТО), основные идеи которой были сформулированы А.Эйнштейном в 1905 г., и общую теорию относительности (ОТО), работу над которой А. Эйнштейн закончил в 1916 г. СТО показала, что многие пространственно-временные свойства, считавшиеся до сих пор неизменными, абсолютными, фактически являются релятивными. Основное философское значение теории относительности состоит в следующем: 1. Теория относительности исключала из науки понятия абсолютного пространства и абсолютного времени, обнаружив тем самым несостоятельность субстанциальной трактовки пространства и времени как самостоятельных, независимых от материи форм бытия. 2. Она показала зависимость пространственно-временных свойств от характера движения и взаимодействия материальных систем, подтвердила правильность трактовки пространства и времени как основных форм существования материи, в качестве содержания которых выступает движущаяся материя. Сам Эйнштейн, отвечая на заданный ему вопрос о сути теории относительности, сказал: «Суть такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы пространство и время». 3. Теория относительности нанесла удар субъективистским трактовкам сущности пространства и времени, которые противоречили ее выводам. Общие свойства, характеризующие пространство и время, вытекают из их характеристик как основных, коренных форм существования материи. К свойствам пространства относятся протяженность, однородность и изотропность, трехмерность. Время обычно характеризуется такими свойствами, как длительность, одномерность, необратимость, однородность. Что касается таких свойств, как длительность времени и протяженность пространства, то их трудно называть свойствами, поскольку они совпадают с самой сущностью пространства и времени. Ведь протяженность и проявляется в способности тел существовать одно подле другого, а длительность в способности существовать одно после другого, что и выражает сущность пространства и времени как форм существования материи К наиболее характерным свойствам пространства относится его трехмерность. Положение любого объекта может быть определено с помощью трех независимых величин. Время одномерно, ибо для фиксации положения события во времени достаточно одной величины. Под заданием положения события, объекта в пространстве или времени имеется в виду определение его координат по отношению к другим событиям и объектам. Факт трехмерности реального физического пространства не противоречит существованию в науке понятия многомерного пространства с любым числом измерений. К специфическим свойством пространства относятся однородность и изотропность. Однородность пространства означает отсутствие в нем каких-либо выделенных точек, а изотропность — равноправность всех возможных направлений. В отличие от пространства время обладает только свойством однородности, заключающимся в равноправии всех его моментов. Свойства однородности пространства и времени и изотропности пространства теснейшим образом связаны с фундаментальными физическими законами, и прежде всего с законами сохранения. Они и лежат в основании самого принципа физической относительности. Характерным специфическим свойством времени является его необратимость, которая проявляется в невозможности возврата в прошлое. Время течет от прошлого через настоящее к будущему, и обратное течение его невозможно. Необратимость времени связана с необратимостью протекания фундаментальных материальных процессов. Некоторые философы усматривают связь необратимости времени с необратимостью термодинамических процессов и с действием закона возрастания энтропии. В микрофизике необратимость времени связывается с характером законов квантовой механики. Существуют также космологические подходы к обоснованию необратимости времени. Наиболее широкое распространение получила причинная концепция времени; ее сторонники считают, что при обратном течении времени причинная связь оказывалась бы невозможной. 2. Как же практически определяются длины отрезков и длительности временных интервалов? По принципу, лежащему в основе многих измерений в физике: путем сравнения с установленной единицей. Для нахождения длины какого-либо отрезка нужно взять единицу длины и посмотреть, сколько раз она (или какая-либо известная ее часть) содержится в этом отрезке. Аналогично мерится и время, хотя его измерение и имеет свою специфику: один и тот же интервал нельзя измерить дважды и одну и ту же " единицу времени" нельзя (как единицу длины) " прикладывать" к различным частям измеряемого интервала, чтобы узнать, сколько раз она в нем содержится. Поэтому приходится использовать много одинаковых временных единиц, вплотную примыкающих друг к другу и целиком заполняющих рассматриваемый отрезок времени. Такой последовательностью единиц может служить какой-либо периодический процесс, т.е. процесс, при котором измерительное устройство в точности повторяет раз за разом одинаковые движения. Число единиц-периодов, укладывающихся на определенном интервале, и называется его длительностью. В настоящее время приняты новые, значительно более стабильные и достаточно легко воспроизводимые эталоны (равные с максимально достижимой сегодня точностью старым, величины которых на текущий момент и были зафиксированы новыми стандартами). Сейчас метр, служащий эталоном длины (и являющийся одновременно ее единицей в системе СИ) это длина пути, проходимого светом в вакууме за строго определенное время. Эталон же времени секунда (одновременно и единица времени в СИ) это интервал, равный заданному числу периодов излучения атома цезия-133 тоже при фиксированных условиях. любое движение должно рассматриваться в определенной системе отсчета. Под системой отсчета мы понимаем произвольно выбранное твердое тело так называемое тело отсчета****), связанную с этим телом систему координат и прибор для измерения времени " часы".Задание системы координат предполагает выбор тех величин, которыми определяется положение тела в пространстве, а также указание того, откуда и как их откладывать. Наиболее распространенной является декартова система координат, однако существуют и другие (например, цилиндрическая, сферическая и проч.). Часы должны показывать время тоже относительно начала отсчета. В различных системах отсчета одно и то же движение может выглядеть совершенно по-разному. 22.Необратимость времени для живых систем. Жизненный цикл организма: от зарождения до гибели. Проблемы старения и смерти организма. Известно одно неотъемлемое свойство времени – его направленность от прошлого к будущему. При описании любых явлений, с которыми человеку приходится иметь дело, прошлое и будущее играют разные роли. Это справедливо для физики, изучающей макроскопические явления (для микромира, на фундаментальном уровне описания этой направленности времени не существует), биологии, геологии, гуманитарных наук. Известный физик Эддингтон придумал яркое название «стрела времени». Одной из основных проблем в классической физике долгое время оставалась проблема необратимости реальных процессов в природе. Первоначально с проблемой необратимости столкнулись в области термодинамики, которая занимается тепловыми явлениями в природе. Следует отметить, что вплоть до начала XVIII века считалось, что эти явления обусловлены наличием в телах определенной " жидкости" - теплорода. Английский астрофизик Фрейд Хойл высказал мысль о связи направления времени с направлением процесса увеличение расстояния между галактиками в ходе расширения Вселенной, которое наблюдается в настоящее время. Эту идею поддержал и Эддингтон. Однако расширение Вселенной, о котором свидетельствует т.н. “красное смещение” спектральных линий в излучении удаляющихся друг от друга галактик («разбегания» галактик) не означает расширения в каждом месте, иначе расширялись бы размеры тел, а этого не наблюдается. Три «стрелы времени»:
|