![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Система EWSD компании Siemens
Первая цифровая АТС системы EWSD была установлена в 1981 году в ЮАР, а сегодня ежеминутно меняющееся световое табло, находящееся в штаб-квартире компании Siemens в Мюнхене и отображающее число установленных портов EWSD более чем в ста странах мира, показывает значения, приближающиеся к двумстам миллионам. Структурная схема станции приведена на рис.5.11. Основные функции взаимодействия с окружением станции выполняют цифровые абонентские блоки DLU и линейные группы LTG. Коммутационное поле SN имеет структуру «Время-Пространство-Время» (TST) и строится из каскадов временной коммутации и каскадов пространственной коммутации. Устройства управления подсистемами решают независимо друг от друга практически все задачи, возникающие в контролируемой каждым из них зоне. Например, устройства управления линейными группами занимаются приемом цифр, регистрацией стоимости телефонных разговоров, наблюдением и другими функциями, а для системных функций, например, таких как выбор маршрута, им требуется помощь координационного процессора СР. Для межпроцессорной связи в коммутационном поле устанавливаются соединения 64 Кбит/с таким же образом, как и соединения между абонентами. Однако межпроцессорные соединения являются полупостоянными.
МБ - Буфер сообщений CCG - Центральный генератор синхронизирующих импульсов
СР - Координационный процессор Рис. 5.11 Структурная схема EWSD Цифровые абонентские блоки DLU обслуживают аналоговые абонентские линии, абонентские линии ISDN, стыки V5.1/V5.2 и учрежденческие телефонные станции, могут находиться непосредственно на телефонной станции или быть удаленными. При необходимости используется модуль Shelter DLU, предназначенный для установки вне помещений. DLU выполняется в двух модификациях- компактная версия, рассчитанная на включение от 30 до 160 абонентских линий, и стандартная версия, обслуживающая от 160 до 944 абонентских линий. Для подключения DLU к EWSD используется четыре тракта 2048 Кбит/с. Линейные группы LTG формируют интерфейс с коммутационным полем SN для абонентских линий, подключаемых к LTG через цифровые абонентские блоки DLU, для цифровых соединительных линий и линий первичного доступа ISDN, подключаемых к LTG непосредственно, и для аналоговых соединительных линий, подключаемых через преобразователь-мультиплексор SC-MUX. Хотя абонентские и соединительные линии используют различные системы сигнализации, линейные группы LTG предоставляют сигнально-неза-висимый интерфейс с коммутационным полем, что способствует, в частности, гибкости введения дополнительных или модифицированных систем сигнализации и независимости программного обеспечения в координационном процессоре от системы сигнализации. Скорость передачи битов во всех многоканальных шинах (магистралях), соединяющихлинейные группы и коммутационное поле, составляет 8192 Кбит/с или 128 каналов со скоростью 64 Кбит/с каждый. Каждая линейная группа подключается к обеим плоскостям дублированного коммутационного поля и содержит следующие функциональные единицы: групповой процессор, групповой переключатель GS или разговорный мультиплексор SPMX, интерфейс с коммутационным полем LIU, сигнальный комплект SU для акустических сигналов, многочастотной сигнализации, набора DTMF и тестового доступа. Коммутационное поле SN состоит из каскадов временной и пространственной коммутации. Количественной характеристикой каскада временной и пространственной коммутации является число многоканальных шин 8 Мбит/с. Соединительные пути через временные и пространственные каскады создаются с помощью управляющих устройств коммутационной группы в соответствии с информацией, поступающей от координационного процессора СР. При максимальной конфигурации SN к нему подключается 504 линейные группы, и оно может обслужить нагрузку интенсивностью до 25200 Эрл. Коммутационное поле всегда дублировано (плоскости 0 и 1), причем для каждого вызова соединение создается одновременно в обеих плоскостях, так что в случае отказа всегда имеется резервное соединение. Координационный процессор СР управляет базой данных, а также конфигурацией и координационными функциями, такими как управление всеми программами, управление станционными и абонентскими данными, обработка информации для маршрутизации, выбора пути и учета стоимости, связь с центром технической эксплуатации, обработка тревожной сигнализации, прием сообщений об ошибках, анализ результатов контроля и сообщений об ошибках, локализация ошибок и их нейтрализация, а также функции интерфейса человек-машина. Блоки электропитания станции работают в двух режимах: 48 В или 60 В постоянного тока. Отметим, что именно компания Siemens косвенно ответственна за переход от некогда существовавшего в нашей стране стандарта 48 В к стандарту 60 В, сохраняющемуся в России и сегодня - но и сама эта компания вынесла на себе груз поддержки обоих стандартов электропитания. Компанией Siemens создана специальная стратегия перехода к мультисервисным сетям связи следующего поколения, которая называется SURPASS. Ее ядром служит центральный сервер обработки речевых потоков и сигнализации SUPRASS hiQ, управляющий шлюзами на границах сети передачи данных. Платформа SURPASS поддерживает большинство протоколов сигнализации (ISUP, INAP, H.323/SIP, MGCP/H.248), обслуживает вызовы Интеллектуальных сетей и имеет API для взаимодействия с программными продуктами 3-й стороны (например, с приложениями электронной коммерции), реализует Gatekeeper и RADIUS, позволяющие выполнять функции привратника и производить идентификацию удаленных пользователей и др. Транспортные шлюзы SUPRASS hiG поддерживают IP-телефонию, VoDSL и функции сервера удаленного доступа RAS. Платформа SUPRASS ЫАобрабатываеттрафикТфОП, обслуживает цифровые абонентские линии xDSL и выполняет функции сервера удаленного доступа. Рис. 5.12 Стратегия SURPASS
|