Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Описание установки
Схема установки изображена на рис. 2.
На оптической скамье 1 располагаются: источник световых волн (лампа) 2; перемещаемый вдоль скамьи держатель 3, на котором закрепляется дифракционная решетка; держатель 4, на котором закрепляется миллиметровая линейка и экран с узкой вертикальной щелью посередине. Расстояние между щелью и дифракционной решеткой изменяют, перемещая держатель 3. В эксперименте в качестве источника света используется люминесцентная лампа. Свет от лампы проходит через щель в экране и попадает на дифракционную решетку. Дифракционную картину наблюдают без вспомогательных линз, приблизив глаз к дифракционной решетке. Фокусировка света происходит непосредственно на сетчатке глаза. Дифракционную картину (совокупность спектральных линий) наблюдаем на фоне экрана с линейкой. Совокупность спектральных линий представляет собой дифракционный спектр. Длину световой волны определяем из формулы (2). , (9) где φ – угол дифракции, d – период дифракционной решетки, λ – длина волны, соответствующая наблюдаемой линии. Из рисунка 3 видно, что , следовательно,
где а – расстояние от центра щели до линии в спектре, L – расстояние между экраном со щелью и решеткой. Подставив в формулу (9) выражение для φ получим: (10)
|