Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Двоїстий симплекс-метод
Розглянемо метод знаходження опорних планів, в якому використовується поняття двоїстості. Ми знаємо, що двоїстою задачею до задачі:
або у векторно-матричній формі:
є задача:
або у векторно-матричній формі:
де АТ- матриця, транспонована до А; (с, х), (b, y) - скалярні добутки відповідних векторів. Якщо пряму задачу привести до канонічного виду і заповнити симплекс-таблицю, то ми бачимо, що стовпчики прямої задачі стануть рядками двоїстої, і навпаки. Тому нема потреби окремо розв’язувати вихідну задачу, а окремо - двоїсту, оскільки розв’язки обох можна знайти за одними й тими ж симплекс-таблицями, пам’ятаючи, що невідомим однієї задачі відповідають стовпчики, а невідомим другої - рядки. Спочатку розглянемо, як можна використати поняття двоїстості для зведення прямої задачі до канонічної, причому основною задачею тут є зведення системи обмежень до канонічної форми, оскільки базисних невідомих в оптимізуючій формі завжди можна позбутися, виразивши їх через вільні з системи обмежень і підставивши в цільову функцію. З цієї простої причини ми не будемо звертати увагу на рядок оптимізуючої форми до тих пір, доки не отримаємо опорного плану. Нехай в нас є задача, в базисі якої деякі плани від’ємні. Тоді ті базисні невідомі, що мають від’ємні плани, повинні бути виключені з базису. Припустимо, що невідома хk має від’ємний план ( В іншому випадку виділяємо стовпчики, в яких числа k- горядка від’ємні. Для кожного з виділених стовпчиків складаємо відношення елементів стовпця «План» до елементів виділених стовпців ( До базису вводимо вільну невідому, для якої (при знаходженні максимуму цільової функції):
|