Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Модель формування штатного розпису фірми
Припустимо, що деяка фірма здійснює процедуру формування штатного розпису. Позначимо: j - індекс посад, ; i– індекс групи кандидатів на займані посади, . У цей момент часу фірма має п груп різних посад, у кожній із яких є вільних. Претенденти на вакансії проходять тестування, за результатами якого їх ділять на п груп по кандидатів у кожній групі. Для кожного кандидата з і- тої групи необхідні певні витрати на навчання для призначення його на j -ту посаду. Тут можливі випадки, за яких кандидат повністю відповідає посаді, якщо ; кандидат взагалі не може обіймати посаду, якщо = . Ставиться завдання про оптимальний розподіл кандидатів на відповідні посади, за умови мінімальних фінансових витрат на їхнє навчання. Для знаходження оптимальної стратеги дій припустимо, що число претендентів відповідає числу запропонованих вакансій. У цьому випадку отримуємо транспортну задачу закритого типу. В протилежному випадку маємо справу з транспортною задачею відкритого типу. Тут постачальником виступає група претендентів на вакансії, а в ролі споживача виступають групи вакантних посад. Витрати на навчання кандидатів будуть слугувати тарифами перевезень. Невідомими величинами задачі будуть хij - кількість кандидатів і -тої групи, які призначаються на j -ту посаду. Зурахуванням введених позначень, економіко-математична модель задачі матиме вигляд: Знайти такий розв’язок хij > 0, , }, який забезпечить при виконанні умов: 1) всі кандидати на посади повинні бути працевлаштованими . 2) всі вакантні посади повинні бути заповненими . 3) рівноваги попиту та пропозиції .
|