Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Г-»А->В






последовательно формулы: (xn-i-^Xn) (при этом исключается допущение Xn-i), (хп-2 —> (Xn-i —> Xn)(xn-r исключается из числа допущений) и т.д., пока не получим требуемое заключение xi -»(хп-2 —>... (Xn-i —> Хп). Это правило построения прямого вы­вода.

Приведем пример вывода с применением этого правила:

((pAq)-> r) |_ (p-> (q -> r)

1. (р л q) —> г — посылка

2. р — допущение

3. q — допущение

4. р л q (2, 3. л в)

5.г(1, 4, ^„)

6. q -> г(3, 5, ^в)(-3)

7.p^(q^r)(2, 6, -^.)(-2)

Другое непрямое правило используется для построения косвенного вывода, при котором допущением является отрицание В или отрицание последнего консеквен-

_ Г, А-> (Вл1В)

та Хп. Это правило имеет вид —————-———— и говорит о том, что если из каких-то Г—>

формул (Г) и допущения (А) получено противоречие (В л ТВ), то из этих формул следует ча. Таким образом, если строится косвенный вывод формулы вида (xi —> (х2 —>...(xn-i —> Хп)...), то после посылок выписываются формулы:

X] 1

допущения

Х2

Xn-i

^п

допущение косвенного доказательства [ДКД]


Затем по правилам вывода получаем следствия из всех имеющихся посылок и допущений до тех пор, пока не получим две противоречащие друг другу формулы'('В и 1В), что свидетельствуе! о несовместимости допущения косвенного доказательства с другими допущениями и посылками. Отсюда делается вывод о его ложности. Тогда в вывод вписывается строка 11 Хп, и тем самым допущение косвенного доказательства исключается. Например, осуществим косвенный вывод: (р —> q) (" -(1q —> 1p) (

l.p—> q —посылка

2.1q — допущение

з. Ирдкд

4/Р(3, 1и)

5.q(l, 4, -> „)

6. а л 1я(5, 2, лв)

7. 1 Up (6, 3, 1в)(-3)

8. 1p (7, 1и)

9. 1q -> 1p (2, 8, -> и)(-2)

Косвенный вывод считается законченным, если в ходе вывода получена какая-то формула и ее отрицание, т е. противоречие. Таким образом, если строится косвенный вывод формулы вида xi —> (x-i —>..—> Хп), то построчно выписывают все антецеденты от xi до Xn-i в качестве допущений; в последней строчке выписывают отрицание последнего консеквента — 1хп как допущение косвенного вывода По правилам вывода получаем различные следствия из всех имеющихся посылок и допущений. Получение двух противоречащих следствий говорит о ложности допущения косвен­ного вывода. Па этом основании ДКД отрицается, т.е. получаем двойное отрицание. Снятие двойного отрицания дает формулу Хп.

Основными логическими свойствами системы натурального вывода являются ее непротиворечивость и полнота.

Непротиворечивость означает, что из истинных посылок могут получаться толь­ко истинные следствия и если формула выводима из пустого множества посылок, то она тождественно истинна. Это исключает возможность вывести из пустого множест­ва посылок какую-либо формулу (А) и ее отрицание (1А).

Полнота системы означает, что дедуктивных ее средств достаточно, чтобы вы­вести, из пустого множества посылок любую тождественно истинную формулу.

Логика предикатов является более общей логической системой и включает логику высказываний как свою часть. Она располагает более эффективными логическими средствами для анализа рассуждений в естественном языке.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. На какие виды делятся выводы из сложных суждений?

2. Как строятся чисто условные умозаключения?

3. Что такое условно-категорическое умозаключение? Назовите его правильные модусы, выразите их в символической записи.

4. Какое умозаключение называется разделительно-категорическим? Назовите его модусы, выразите их в символической записи.

5. Укажите условия правильности выводов по утверждающе-отрицающему и от-рицающе-утверждающему модусам разделительно-категорического умозаключения.

6. Какое умозаключение называется условно-разделительным (леммантичес-ким)? Какие модусы имеет дилемма?

7. Что такое энтимема?

8. Каковы принципы построения логики высказываний?

9. Покажите значение различных видов условных и разделительных умозаключе­ний в работе юриста.

Глава VIII ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ

Познание в любой области науки и практики начинается с эмпи­рического познания. В процессе наблюдения однотипных природ­ных и социальных явлений фиксируется.внимание на повторяемос­ти у них определенных признаков. Устойчивая повторяемость наво­дит на мысль (индуцирует), что каждый из таких признаков является не индивидуальным, а общим, присущим всем явлениям определен­ного класса. Логический переход от знания об отдельных явлениях к знанию общему совершается в этом случае в форме индуктивного

умозаключения, или индукции (от латинского inductio — «наведе­ние»).

Индуктивным называется умозаключение, в котором на осно­вании принадлежности признака отдельным предметам или час­тям некоторого класса делают вывод о его принадлежности клас­су в целом.

В истории физики, например, опытным путем было установлено, что железные стержни хорошо проводят электричество. Такое же свойство было обнаружено у медных стержней и у серебра. Учиты­вая принадлежность указанных проводников к металлам, было сде­лано индуктивное обобщение, что всем металлам свойственна электропроводность.

Посылками индуктивного умозаключения выступают суждения, в которых фиксируется полученная опытным путем информация о повторяемости признака Р у ряда явлений — Si, 82,.... S„, принадле­жащих одному и тому же классу К. Схема умозаключения имеет следующий вид:

Посылки:

1) Si имеет признак Р S2 имеет признак Р

Sn имеет признак Р 2) Si, 82,..., Sn — элементы (части) класса К

11 - 1У02

Заключение:

Всем предметам класса К присущ признак Р


В основе логического перехода от посылок к заключению в и дуктивном выводе лежит подтверждаемое тысячелетней практикой положение о закономерном развитии мира, всеобщем характере причинной связи, проявлении необходимых признаков явлений через их всеобщность и устойчивую повторяемость. Именно (эти методологические положения оправдывают логическую состоятель­ность и эффективность индуктивных выводов.

Основная функция индуктивных выводов в процессе позна­ния — генерализация, т.е. получение общих суждений. По своему содержанию и познавательному значению эти обобщения могут но­сить различный характер — от простейших обобщений повседнев­ной практики до эмпирических обобщений в науке или универсаль­ных суждений, выражающих всеобщие законы.

История науки показывает, что многие открытия в физике.в области электричества, магнетизма, оптики были сделаны на основе индуктивного обобщения эмпирических данных. Индуктивная обра­ботка результатов наблюдений предшествовала научной классифи­кации растений и животных в биологии. Индуктивным обобщениям обязаны многие гипотезы в современной науке. Важное место при­надлежит индуктивным выводам в судебно-следственной практи­ке — на их основе формулируются многочисленные обобщения, ка­сающиеся обычных отношений между людьми, мотивов и целей совершения противоправных действий, способов совершения пре­ступлений, типичных реакций виновников преступления на дейст­вия следственных органов и т.п.

Полнота и законченность опыта влияют на строгость логическо­го следования в индукции, предопределяя в конечном счете демон-стративность или недемонстративность этих умозаключений.

В зависимости от полноты и законченности эмпирического ис­следования различают два вида индуктивных умозаключений: пол­ную индукцию и неполную индукцию. Рассмотрим их особенности.

§ 1. Полная индукция

Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса оп­ределенного признака делают вывод о его принадлежности классу в

целом.

Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элемен­тов в которых является конечным и легко обозримым. Например,

число государств в Европе, количество промышленных предпри­ятий в данном регионе, число субъектов федерации в данном госу­дарстве и т.п.

Представим, что перед аудиторской комиссией поставлена зада­ча проверить состояние финансовой дисциплины в филиалах кон­кретного банковского объединения. Известно, что в его состав вхо­дят пять отдельных филиалов. Обычный способ проверки в таких случаях — анализ деятельности каждого из пяти банков. Если ока­жется, что ни в одном из них не обнаружено финансовых наруше­ний, то тем самым можно сделать обобщающее заключение: все филиалы банковского объединения соблюдают финансовую дис­циплину.

Схема умозаключения полной индукции имеет следующий вид:

Посылки:

1) Si имеет признак Р §2 имеет признак Р

Sn имеет признак Р 2) Si, 82,..., Sn — составляют класс К

Заключение:

Всем предметам класса К присущ признак Р

Выраженная в посылках этого умозаключения информация о каждом элементе или каждой части класса служит показателем пол­ноты исследования и достаточным основанием для логического переноса признака на весь класс. Тем самым вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным.

В одних случаях полная индукция дает утвердительные заключе­ния, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в по­сылках фиксируется отсутствие определенного признака у всех представителей класса.

Познавательная роль умозаключения полной индукции проявля­ется в формировании нового знания о классе или роде явлений. Логический перенос признака с отдельных предметов на класс в целом не является простым суммированием. Знание о классе или роде — это обобщение, представляющее собой новую ступень в раз-витиизнания.


Так, при выявлении характера кривой, по которой движутся пла­неты вокруг Солнца, в астрономии первоначально было установле­но, что Марс, Венера, Юпитер, Сатурн, Земля обращаются по эллип-сообразным орбитам. С открытием новых планет было установлено, что Уран, Нептун, Плутон и Меркурий обращаются по таким же орбитам. В итоге в форме полной индукции было сделано обобще­ние, что все планеты Солнечной системы обращаются по эллипсооб-разным орбитам. Это новое знание имеет принципиально иное зна­чение, нежели констатация факта эллипсообразного движения каж­дой из планет. Во-первых, обобщающий вывод оказывает влияние на развитие понятия «планета Солнечной системы», поскольку в его содержание может быть включен новый признак — обращение во­круг Солнца эллипсообразное. Во-вторых, этот признак может слу­жить основой для выявления других существенных характеристик всего класса явлений, например, для решения вопроса о механизме возникновения планет Солнечной системы.

Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Так, в гео­метрии теорема о сумме внутренних углов треугольника доказывает­ся отдельно для трех видов треугольников: остроугольных, прямо­угольных и тупоугольных. Учитывая, что в каждом из них сумма углов равна 180° и все они составляют конечное множество, строят индуктивное обобщение: во всяком треугольнике сумма его внут­ренних углов равна 180°.

В судебном исследовании нередко используются доказательные рассуждения в форме полной индукции с отрицательными заключе­ниями. Например, исчерпывающим перечислением разновидностей исключается определенный способ совершения преступления, спо­соб проникновения злоумышленника к месту совершения преступ­ления, тип оружия, которым было нанесено ранение, и т.п.

Применимость полной индукции в рассуждениях определяется практической перечислимостью множества явлений. Если невоз­можно охватить весь класс предметов, то обобщение строится в форме неполной индукции.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал