![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства плоской волны в однородной изотропной среде ⇐ ПредыдущаяСтр 2 из 2
Исследуем основные свойства плоской волны, распространяющейся в безграничной однородной изотропной среде. Она описывается уравнениями Даламбера (см. лекцию 2).
В комплексной форме эти уравнения записываются в виде:
Данные уравнения называются неоднородными уравнениями Гельмгольца. В случае, если источники, создающие волну, находятся за пределами рассматриваемой области уравнения (8.15), (8.16) (с учетом равенства
Уравнения (8.17), (8.18) называются однородными уравнениями Гельмгольца. Поле рассматриваемой нами волны не зависит от координат х и у. Тогда уравнения (8.17) и (8.18) принимают вид
Решая уравнение для вектора
Для анализа формулы (8.19) необходимо в параметре Возводя в квадрат обе части последнего равенства и разделяя затем вещественную и мнимую части, приходим к системе двух алгебраических уравнений относительно Re
В результате получаем, что
Так как (
получаем
получаем Im Из (8.20) видно, что Re
|