Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Квайна-Мак-Класки






Метод представляет собой формализацию метода Квайна, ориентированную на использование ЭВМ. Формализация заключается в записи конституент единицы (членов СДНФ) их двоичными номерами. Все номера разбиваются на непересекающиеся группы по числу единиц в двоичном номере. Склеивания производятся только между соседними группами. Ликвидируемый разряд обозначается знаком «–» («тире»). Дальнейшие группы из полученных импликант образуются с учетом однинакового расположения тире. Такое обозначение импликант называется обобщенными кодами. Пусть задана логическая функция

®111Ú 101Ú 001Ú 000Ú 110.

Сгруппируем эти конституенты единицы по числу единиц:

Дальнейшие склеивания невозможны. Нахождение минимальных ДНФ далее производится по импликантной таблице (табл. 36):

Это означает, что тупиковые ДНФ содержат по три простые импликанты и имеют вид:

(две инверсии);

(три инверсии).

Таблица 36

Импликантная таблица Квайна-Мак-Класки

  Простые импликанты Конституенты единиц
  х1 х2 х3          
А     -     + +  
В -       + +    
С   -   + +      
D     - +       +

 

Заметим, что склеивание двух импликант с тире возможно только при соответствующем их расположении, например:

00-- 01--
1-01

Можно выбрать любую из полученных ТДНФ, а с учетом меньшего числа инверсий – первую.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал