Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Химический потенциал ⇐ ПредыдущаяСтр 3 из 3
Пусть однокомпонентная однофазная термодинамическая система является открытой, причём только вещество, составляющее эту систему, может проникать через оболочку. И пусть система является однородной и равновесной. Очевидно, что изменение внутренней энергии такой системы будет происходить не только вследствие подвода теплоты и совершения над ней работы, но также и вследствие изменения её массы в силу того, что вещество, проникающее через оболочку, несёт с собой свою, присущую ему энергию. Тогда фундаментальные уравнения Гиббса для каждого из четырёх термодинамических потенциалов (5.3) и (5.5) следует дополнить ещё одним слагаемым, пропорциональным изменению массы системы, т.е.
Величина μ, определяемая, согласно свойствам полных дифференциалов, частными производными
носит название химического потенциала и имеет смысл изменения энергии термодинамической системы при изменении её массы на единицу при поддержании постоянной той или иной пары независимых термодинамических параметров системы. Найдём связь химического потенциала с другими термодинамическими потенциалами системы. Для этого рассмотрим четвёртое из выражений (6.1). Свободную энергию Гиббса Φ, энтропию S и объём системы V запишем через их удельные величины:
Заменяя дифференциал свободной энергии Гиббса его выражением
Но согласно (5.5) для M =const=1 кг
т.е. химический потенциал вещества есть его удельная свободная энергия Гиббса. Для идеального газа, используя выражения для энтальпии (2.35) и энтропии (2.44), химический потенциал получим в виде
Рассмотрим однокомпонентную систему, состоящую из двух взаимодействующих фаз. Пусть каждая из фаз находится в своём внутреннем равновесии, т.е. каждая из них характеризуется своим набором интенсивных и экстенсивных параметров. Изучим вопрос о равновесии между фазами системы. Для этого заключим всю систему в изолирующую оболочку (рис.5.1). Тогда при малом изменении состояния каждой из фаз (подсистем) можно записать для них термодинамические тождества в соответствии с (6.1)
В силу аддитивности экстенсивных величин
т.е. после почленного суммирования равенств (6.5) получаем
В силу произвольности дифференциалов
Химический потенциал по определению сам является функцией " естественной" пары переменных
Вид функций Таким образом, в двухфазной однокомпонентной системе температура и давление однозначно связаны. Объём же системы может принимать произвольное значение в зависимости от соотношения между массами фаз. Состояние равновесия двухфазной системы называется состоянием насыщения, а равные для фаз температура и давление - параметрами насыщения Рассмотрим аналогичным образом равновесие трёхфазной однокомпонентной системы. Имеем в данном случае:
Но для замкнутой системы
с учётом чего, складывая почленно (6.8), получаем
Так как все дифференциалы здесь независимы и значения их произвольны, находим условия равновесия:
Химическое равновесие, т.е. равенство химических потенциалов фаз, может быть записано в виде двух алгебраических уравнений
Это есть система двух уравнений с двумя неизвестными Совершенно аналогично для равновесной четырёхфазной однокомпонентной системы получим
В этом случае мы получаем систему трёх уравнений с двумя неизвестными. Такая система уравнений является несовместной за исключением случая, когда любые два из них пропорциональны друг другу, т.е. когда две из четырёх фаз фактически неразличимы, а это уже будет трёхфазная система. Таким образом, в равновесной однокомпонентной системе возможно одновременное сосуществование не более чем трёх фаз. Если равновесная термодинамическая система является многокомпонентной, то число одновременно сосуществующих фаз может быть больше трёх, а именно
где n есть число компонентов системы. Этот результат носит название правила фаз Гиббса.
Известно, что все вещества, в зависимости от условий (давление и температура), могут находиться в трёх агрегатных состояниях: твёрдом, жидком и газообразном. Эти три различных агрегатных состояния ввиду резкого различия их свойств и наличия резкой границы раздела уже могли бы рассматриваться как фазы, однако понятие фазы является более общим, так как жидкое и особенно твёрдое состояния вещества характеризуются при определённых условиях различными физическими свойствами. Но для многих веществ в не очень больших пределах изменения внешних условий понятия агрегатного состояния и фазы совпадают. В дальнейшем под фазами мы будем понимать именно агрегатные состояния. Если фазовый переход сопровождается выделением или поглощением энергии, то он называется фазовым переходом I рода в отличие от фазовых переходов II рода, которые не сопровождаются поглощением или выделением энергии, а связаны со скачкообразным изменением таких физических свойств как теплоёмкость, тепло- и электропроводность, вязкость и т.д. Примеры фазовых переходов II рода: переход в сверхтекучее или в сверхпроводящее состояние, переход ферромагнетик – парамагнетик и др. Мы в дальнейшем будем рассматривать только фазовые переходы I рода, во время которых происходит изменение агрегатного состояния, а точнее, переход " жидкость - пар", который весьма часто имеет место в тепловых машинах. Обычно подразумевается, что фазовый переход происходит при постоянном давлении (а значит, и при постоянной температуре), хотя в общем случае это не является обязательным.
|