Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Матричный метод
Если матрица А системы линейных уравнений невырожденная, т.е. , то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A -1 B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X = C, C = A -1 B называют матричным способом решения системы, или решением по методу обратной матрицы. Пример 2.15. Решить матричным способом систему уравнений Решение. Обозначим ; Тогда данная система уравнений запишется матричным уравнением AX = B. Поскольку , то матрица A невырождена и поэтому имеет обратную: . Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A -1 B. В данном случае
и, следовательно, . Выполняя действия над матрицами, получим: , , . Итак, .
|