Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формы рядов распределения. Расчет показателей центра распределения






 

Разнообразие статистических совокупностей обуславливает и многообразие рядов распределения, которые характеризуются прежде всего формой соотношения частот и значений варьирующего признака. По своей форме ряды распределения бывают одно-, двух- и многовершинными. Распределения качественно однородных совокупностей преимущественно одновершинные. Среди них выделяют симметричные и асимметричные, остро- и плосковершинные ряды распределения.

Для характеристики центра распределения применяются: средняя арифметическая, мода и медиана. В симметричном распределении .

Порядок определения средней арифметической приведен в теме 4. Рассмотрим особенности расчета моды и медианы дискретных и вариационных рядов.

Модой называется наиболее часто встречающееся значение признака.

В дискретном ряду мода – это варианта с наибольшей частотой.

В интервальном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту. В пределах интервала определяется значение признака, которое является модой:

 

, (5.1)

где -нижняя граница модального интервала;

- величина модального интервала;

- частота модального, предмодального и послемодального интервалов соответственно.

Медиана – варианта, которая делит ранжированный ряд на две равные части.

Медиана в дискретном ряду – варианта, расположенная в середине ряда. Для ранжированного ряда с четным числом членов медианой будет средняя арифметическая из двух смежных вариант.

В интервальном вариационном ряду порядок нахождения медианы следующий: располагаем варианты по ранжиру, определяем накопленные (кумулятивные) частоты, находим медианный интервал. Он соответствует интервалу, кумулятивная частота которого равна или превышает половину суммы частот.

Медиана в интервальном вариационном ряду определяется по формуле:

 

 

, (5.2)

где – нижняя граница медианного интервала;

- величина медианного интервала;

- сумма накопленных частот, предшествующих медианному интервалу;

- частота медианного интервала.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал