Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формы рядов распределения. Расчет показателей центра распределения
Разнообразие статистических совокупностей обуславливает и многообразие рядов распределения, которые характеризуются прежде всего формой соотношения частот и значений варьирующего признака. По своей форме ряды распределения бывают одно-, двух- и многовершинными. Распределения качественно однородных совокупностей преимущественно одновершинные. Среди них выделяют симметричные и асимметричные, остро- и плосковершинные ряды распределения. Для характеристики центра распределения применяются: средняя арифметическая, мода и медиана. В симметричном распределении . Порядок определения средней арифметической приведен в теме 4. Рассмотрим особенности расчета моды и медианы дискретных и вариационных рядов. Модой называется наиболее часто встречающееся значение признака. В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту. В пределах интервала определяется значение признака, которое является модой:
, (5.1) где -нижняя граница модального интервала; - величина модального интервала; - частота модального, предмодального и послемодального интервалов соответственно. Медиана – варианта, которая делит ранжированный ряд на две равные части. Медиана в дискретном ряду – варианта, расположенная в середине ряда. Для ранжированного ряда с четным числом членов медианой будет средняя арифметическая из двух смежных вариант. В интервальном вариационном ряду порядок нахождения медианы следующий: располагаем варианты по ранжиру, определяем накопленные (кумулятивные) частоты, находим медианный интервал. Он соответствует интервалу, кумулятивная частота которого равна или превышает половину суммы частот. Медиана в интервальном вариационном ряду определяется по формуле:
, (5.2) где – нижняя граница медианного интервала; - величина медианного интервала; - сумма накопленных частот, предшествующих медианному интервалу; - частота медианного интервала.
|