Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Обход дерева

Cписки

Списком называется упорядоченное множество, состоящее из переменного числа элементов, к которым применимы операции включения, исключения. Список, отражающий отношения соседства между элементами, называется линейным.

Длина списка равна числу элементов, содержащихся в списке.

Список нулевой длины называется пустым списком.

Графически связи в списках удобно изображать с помощью стрелок. Если компонента не связана ни с какой другой, то в поле указателя записывают значение, не указывающее ни на какой элемент. Такая ссылка обозначается специальным именем - nil.

На рис. 1 приведена структура односвязного списка. На нем поле INF - информационное поле, данные, NEXT - указатель на следующий элемент списка. Каждый список должен иметь особый элемент, называемый указателем начала списка или головой списка, который обычно по формату отличен от остальных элементов. В поле указателя последнего элемента списка находится специальный признак nil, свидетельствующий о конце списка.

 

Рис. 1: Представление односвязного списка в памяти

 

Двусвязный список характеризуется наличием пары указателей в каждом элементе: на предыдущий элемент и на следующий:

Рис. 2: Представление двусвязного списка в памяти

 

Очевидный плюс тут в том, что от данного элемента структуры мы можем пойти в обе стороны. Таким образом упрощаются многие операции. Однако на указатели тратится дополнительная память.

Разновидностью рассмотренных видов линейных списков является кольцевой список, который может быть организован на основе как односвязного, так и двухсвязного списков. При этом в односвязном списке указатель последнего элемента должен указывать на первый элемент; в двухсвязном списке в первом и последнем элементах соответствующие указатели переопределяются, как показано на рис.3.

Рис. 3: Структура кольцевого двухсвязного списка

 

При работе со списками на практике чаще всего приходится выполнять следующие операции:

- найти элемент с заданным свойством;

- определить первый элемент в линейном списке;

- вставить дополнительный элемент до или после указанного узла;

- исключить определенный элемент из списка;

- упорядочить узлы линейного списка в определенном порядке.

В реальных языках программирования нет какой-либо структуры данных для представления линейного списка так, чтобы все указанные операции над ним выполнялись в одинаковой степени эффективно. Поэтому при работе с линейными списками важным является представление используемых в программе линейных списков таким образом, чтобы была обеспечена максимальная эффективность и по времени выполнения программы, и по объему требуемой памяти.

 

Cтек

Стек - такой последовательный список с переменной длиной, включение и исключение элементов из которого выполняются только с одной стороны списка, называемого вершиной стека. Применяются и другие названия стека - магазин и очередь, функционирующая по принципу LIFO (Last - In - First- Out - " последним пришел - первым исключается"). Примеры стека: винтовочный патронный магазин, тупиковый железнодорожный разъезд для сортировки вагонов.

Основные операции над стеком - включение нового элемента (английское название push - заталкивать) и исключение элемента из стека (англ. pop - выскакивать).

 

Для наглядности рассмотрим небольшой пример, демонстрирующий принцип включения элементов в стек и исключения элементов из стека. На рис. 4 (а, б, с) изображены состояния стека:

· а). пустого;

· б-г). после последовательного включения в него элементов с именами 'A', 'B', 'C';

· д, е). после последовательного удаления из стека элементов 'C' и 'B';

· ж). после включения в стек элемента 'D'.

Рис. 4: Включение и исключение элементов из стека

 

Как видно из рис.4, стек можно представить, например, в виде стопки книг (элементов), лежащей на столе.

 

Дерево — одна из наиболее широко распространённых структур данных в информатике, эмулирующая древовидную структуру в виде набора связанных узлов.

 

Каждый узел дерева имеет ноль или более узлов-потомков, которые располагаются ниже по дереву (по соглашению, деревья 'растут' вниз, а не вверх, как это происходит с настоящими деревьями). Узел, имеющий потомка, называется узлом-родителем относительно своего потомка. Каждый узел имеет не больше одного предка. Высота узла - это максимальная длина нисходящего пути от этого узла к самому нижнему узлу (краевому узлу), называемому листом. Высота корневого узла равна высоте всего дерева. Глубина вложенности узла равна длине пути до корневого узла.

Самый верхний узел дерева называется корневым узлом.

Узлы самого нижнего уровня дерева называются листовыми узлами или листьями. Так как они находятся на самом нижнем уровне, они не имеют никаких потомков.

Поддерево - часть деревообразной структуры данных, которая может быть представлено в виде отдельного дерева.

Бинарное дерево – это динамическая структура данных, состоящая из узлов, каждый из которых содержит, кроме данных, не более двух ссылок на различные бинарные деревья. На каждый узел имеется ровно одна ссылка.

Описать такую структуру можно следующим образом:

Если дерево организовано таким образом, что для каждого узла все ключи его левого поддерева меньше ключа этого узла, а все ключи его правого поддерева — больше, оно называется деревом поиска. Одинаковые ключи не допускаются. В дереве поиска можно найти элемент по ключу, двигаясь от корня и переходя на левое или правое поддерево в зависимости от значения ключа в каждом узле.

Идеально сбалансированное дерево – дерево, в котором количество узлов справа и слева отличается не более чем на единицу.

Линейный список можно представить как вырожденное бинарное дерево, в котором каждый узел имеет не более одной ссылки.

Деревья и списки являются рекурсивными структурами, т. к. каждое поддерево также является деревом. Таким образом, дерево можно определить как рекурсивную структуру, в которой каждый элемент является:

· либо пустой структурой;

· либо элементом, с которым связано конечное число поддеревьев.

Действия с рекурсивными структурами удобнее всего описываются с помощью рекурсивных алгоритмов.

Обход дерева

Для того, чтобы выполнить определенную операцию над всеми узлами дерева, все узлы надо обойти. Такая задача называется обходом дерева. При обходе узлы должны посещаться в определенном порядке. Существуют три принципа упорядочивания. Рассмотрим дерево, представленное на рис.

Рис. Бинарное дерево

На этом дереве можно определить три метода упорядочивания:

Слева направо: Левое поддерево – Корень – Правое поддерево;

Сверху вниз: Корень – Левое поддерево – Правое поддерево;

Снизу вверх: Левое поддерево – Правое поддерево – Корень.

Операции с деревьями:

· Перебор всех элементов дерева

· Перебор ветви дерева

· Поиск элемента

· Вставка нового элемента в определённую позицию

· Удаление элемента

· Удаление ветви дерева

· Добавление ветви дерева

· Нахождение корневого элемента для любого узла

 

<== предыдущая лекция | следующая лекция ==>
Монтаж компенсационного шкива | Diphtheria
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал