Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Автокорреляционная функция.






Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

В обработке сигналов автокорреляционная функция определяется интегралом:

и показывает связь сигнала (функции ) с копией самого себя, смещённого на величину .

В теории случайных функций АКФ является корреляционным моментом двух значений одной случайной функции

:

Здесь , а — математическое ожидание.

Автокорреляционная функция полезна в некоторых случаях, поскольку она дает наглядную картину того, как зависимость в ряде затухает с увеличением задержки или разделяющего промежутка и между точками ряда. Однако иногда автокорреляционная функция с трудом поддается интерпретации, так как соседние значения могут быть сильно коррелированы. Это означает, что выборочная автокорреляционная функция может иметь видимые искажения

39. Модели авторегрессии.

Модель авторегрессии — скользящего среднего (англ. autoregressive moving-average model, ARMA) — одна из математических моделей, использующихся для анализа и прогнозирования стационарных временных рядов в статистике. Модель ARMA обобщает две более простые модели временных рядов — модель авторегрессии (AR) и модель скользящего среднего (MA).

Известно несколько видов авторегрессионных моделей:

- собственно модели авторегрессии (AR - auto regressive);

- модели скользящего среднего (MA - moving average);

- авторегрессии - скользящего среднего (ARMA – autoregressive moving average);

- модели авторегрессии - проинтегрированного скользящего среднего (ARIMA - autoregressive integrated moving average);

- модели авторегрессии с условной гетероскедастичностью (ARCH - autoregressive conditional heteroscedasticity);

- расширения указанных выше авторегрессионных моделей: обобщенная авторегрессионная условно гетероскедастическая модель (GARCH – generalized autoregressive conditional heteroscedasticity model), интегрированная обобщенная авторегрессионная условно гетероскедастическая модель (IGARCH - integrated generalized autoregressive conditional heteroscedasticity model) и др.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал