Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Особенности технологии сварки комбинированных конструкций из сталей разнородных сталей одного структурного класса






Сварку перлитных сталей, отличающихся лишь степенью легирования, производят электродами, применяемыми для менее легированной стали, если к швам не предъявляется требований повышенной прочности или особых свойств жаропрочности, коррозионной стойкости, характерных для более легированной. Однако технологические режимы сварки и температуру подогрева следует выбирать (рассчитывать) применительно к более легированной стали. Рекомендации по сварке различных групп перлитных сталей в пределах одного класса приведены в табл. 4

При невозможности подогрева при сварке производят наплавку кромок более легированной стали с подогревом электродами типа Э42А. Толщина наплавленного слоя должна быть достаточной, чтобы более легированная сталь не нагревалась до температур Ac1, т.е. чтобы не создавались условия для закалки.

При сварке различных сочетаний высокохромистых мартенситных (с 12 % Cr), ферритных (с 28 % Cr) и ферритно-аустенитных сталей типа Х21Н5 выбор сварочных материалов и технологий должен исключить образование холодных трещин и хрупких участков в швах. Режим подогрева назначают по наиболее закаливающейся стали, с немедленным отпуском, не допуская полного охлаждения. Для этого применяют сварочные материалы ферритно-аустенитного класса, сварку с минимальной погонной энергией, так как высокохромистые стали в 3ТВ весьма склонны к росту зерна, приводящего к охрупчиванию соединения.

2.1. Большинство этих сталей склонно к образованию горячих или холодных трещин при сварке, что усложняет процесс обеспечения качества сварных соединений с требуемыми свойствами. При дуговой сварке высоколегированных сталей следует предохранять поверхности металла от попадания на него брызг металла и шлака, так как они, повреждая поверхность, могут быть причиной коррозии или концентрации напряжений, ослабляющих конструкцию. Для предохранения от приваривания брызг на поверхность металла, прилегающую к шву, наносят защитное покрытие (кремнийорганический лак, грунт ВЛ-02, ВЛ-023 и др.).

Высокохромистые мартенситные стали (20X13, 14Х17Н2 и др.), мартенситно-ферритные (12X13, 14Х12Н2МФ и др.)—это закаливающиеся стали, склонные к образованию холодных трещин. В меньшей степени к ним относятся стали ферритного класса (12X17, 08Х17Т, 08Х18Т1 и др.). Для предотвращения трещинообразования применяют предварительный или сопутствующий подогрев, особенно необходимый с увеличением содержания в стали углерода и ее толщины. После сварки мартенситные, мартенситно-фер-ритные, а иногда и ферритные стали подвергают высокому отпуску при температуре 680—720 °С, а жаропрочные (20X13, 12X13 и др.) — при температуре 730—750 °С. Отпуск улучшает структуру, механические свойства и коррозионную стойкость.

Следует учитывать, что коррозионная стойкость сталей, не содержащих титана или ниобия, при нагревании более 500 °С постепенно падает, поэтому в сталь вводят эти элементы и дополнительно легируют молибденом, ванадием и другими добавками, например мар-тенситная сталь 18X1ШНФБ; мартенситно-ферритная 18Х12ВМБФР; ферритная 15Х25Т и др. Для сварки мартенситных, мартенситно-ферритных и ферритных сталей применяют электроды, стержни и покрытия которых обеспечивают получение наплавленного металла, близкого по химическому составу к основному металлу, например мартенситную сталь марки 15X11 ВМФ сваривают электродами Э12Х11НВМФ марки КТИ-10; мартенситно-ферритную сталь марки 12X13 —электродами Э12Х13 марки УОНИИ-13/ШЗ и т.д. Если конструкции из стали этого класса работают на статическую нагрузку и к швам не предъявляются требования высокой прочности, сварку можно выполнить аустенитными или аустенитно-ферритными электродами, например ферритную сталь 15Х25Т сваривают электродами Э02Х20Н14Г2М2 марки ОЗЛ-20, при этом отпуск после сварки можно не проводить.

 

Для сварки используют режим с малой погонной энергией для предотвращения роста зерна и охрупчивания зоны термического влияния.

В покрытии электродов, применяемых для сварки высокохромистых сталей, не должно быть газообразующих органических соединений, а газовая защита должна осуществляться за счет диссоциации карбонатов и выделяемой при этом СО (окиси углерода). Как и при сварке среднелегированных сталей, требования к качеству сборки и очистки металла перед сваркой остаются такими же и еще более ужесточаются.

Высокохромистые стали рассмотренных классов свариваются также в среде аргона вольфрамовым электродом. Этим способом рекомендуется соединять детали толщиной до 5—6 мм с подогревом, последующая термообработка не требуется. Целесообразно сваривать вольфрамовым электродом корневые швы более толстой стали, что обеспечивает хорошее формирование обратного валика, остальные слои шва выполняют электродуговой ручной сваркой или другим способом.

К высоколегированным хромоникелевым сталям относятся стали аустенитного, аустенитно-мартенсито-вого и аустенитно-ферритного классов. Высоколегированные аустенитные сплавы на железоникелевой или никелевой основе являются устойчиво аустенитными и не меняют структуры при нагревании и охлаждении на воздухе. Эти стали и сплавы широко применяются в различных конструкциях, работающих в тяжелых условиях высоких и низких температур. Жаропрочные стали, легированные элементами-упрочнителями — вольфрамом и молибденом, способны длительно выдерживать большие нагрузки в условиях высоких температур. Жаростойкие стали устойчивы против химического разрушения поверхности в газовых агрессивных средах при температурах 1100—1150°С. Эти стали и сплавы содержат мало вредных примесей, поэтому основными задачами при сварке являются хорошая защита расплавленного металла от воздуха и применение электродов со стержнем аустенитной структуры и покрытием основного типа.

Аустенитные хромоникелевые стали особенно чувствительны к увеличению углерода и серы, а также других элементов, образующих легкоплавкие эвтектики.

Для борьбы с горячими трещинами стремятся уменьшить содержание в стали и наплавленном металле С, S, Си и других элементов или подавить их другими добавками, связывающими S, как, например, Мп, а также уменьшить влияние термических напряжений путем применения благоприятных режимов сварки и предварительного и сопутствующего подогрева. Хромомарганцевые стали 15Х17АГ14 и хромони-кельмарганцевые стали 12Х17Г2АН4 менее склонны к образованию горячих трещин, чем хромоникелевые.

В хромоникелевых сталях может развиваться межкристаллитная коррозия при замедленном охлаждении в интервале 500—800 °С в связи с тем, что по границам зерен происходит выделение карбидов хрома (Сг4С) за счет обеднения хромом участков, прилегающих к границам зерен. В результате этого содержание Сг в приграничных участках падает ниже 12%, что под действием агрессивных сред приводит к коррозии. Так как аустенит представляет собой твердый раствор Cr, Ni, Мп, С и других элементов в железе, а растворимость С в Fe не превышает 0, 02—0, 03 %, то в интервале указанных температур лишний углерод выделяется из твердого раствора и образует карбид хрома. Чем больше в стали углерода, тем больше ее склонность к межкристаллитной коррозии; увеличение процента хрома тормозит этот процесс.

Ферритная составляющая в аустенитно-ферритной стали должна быть в пределах 3—5 % феррита, Для предупреждения межкристаллитной коррозии, кроме того, необходимо применять сварку на низких режимах (на уменьшенных токах, малой погонной энергии и электродами диаметром не более 4—5 мм), особенно для многослойных швов.

Одним из дефектов аустенитно-мартенситных и аустенитно-ферритных сталей является склонность их при сварке к перегреву и охрупчиванию зоны влияния. Это вызывается ростом зерна в связи с перегревом ферритной фазы, образующейся вблизи зоны сплавления. Охрупчиванию способствует также превращение обогащенного углеродом аустенита (при высокой температуре аустенит переобогащается углеродом) в мартенсит с охлаждением шва. Снижение аустенитной фазы ниже 20 % повышает склонность их к межкристаллитной коррозии. Для предупреждения этого дефекта стремятся снизить содержание углерода в швах. Иногда назначают полную термообработку для восстановления коррозионных свойств.

Сварка аустенитных сталей не вызывает особых затруднений. Надо иметь в виду, что в сварных соединениях аустенитно-ферритных и аустенитно-мартенситных сталей возможно выделение водорода по границам зерен. Для предупреждения этого сварное соединение подвергают отпуску в течение 1—2 ч при температуре 150 °С.

Высокоуглеродистые аустенитные стали хорошо свариваются в атмосфере аргона с применением присадочной проволоки того же состава, что и основной металл, но с меньшим содержанием углерода; сварка рекомендуется для стали толщиной до 5—7 мм.

В целях экономии высоколегированной стали для изготовления сосудов, аппаратов и трубопроводов, работающих под давлением в агрессивных средах, применяют двухслойную сталь, основной слой которой состоит из низкоуглеродистой или низколегированной стали толщиной 4—60 мм, а плакирующий (облицовочный) — из высоколегированной стали или сплава толщиной 0, 7—6 мм. При ручной дуговой сварке такой стали делают двухстороннюю разделку и сперва заваривают основной слой электродами УОНИИ-13/45 или УОНИИ-13/55, при этом стараются не задеть плакирующий слой. После зачистки корня шва со стороны плакирующего слоя заваривают первый слой электродами с повышенным запасом аустенитности, например марки К-ЗМ, а затем заваривают плакирующий слой электродами НЖ-13, СЛ-28 или им аналогичными.

Хромистые мартенситно- ферритные стали. У стали марки 08Х13 с содержанием углерода 0, 08 %, термокинетическая диаграмма распада аустенита имеет две областипревышения: в интервале 600-930 С, соответствующем образованию феррито-карбидной структуры, и 120-420 С - мартенситной. Количествопревращённого аустенита в каждом из указанных температурных интерваловзависит, главным образом, от скорости охлаждения. Например, приохлаждении со средней скоростью 0, 025 С/с превращение аустенитапроисходит преимущественно в верхней области с образованием феррита икарбидов. Лишь 10 % аустенита в этом случае превращается в мартенсит впроцессе охлаждения от 420 С. Повышение скорости охлаждения стали до 10C/c способствует переохлаждению аустенита до температуры началамартенситного превращения (420 С) и полному его бездиффузионномупревращению. Изменения в структуре, обусловленные увеличением скоростиохлаждения, сказываются и на механических свойствах сварных соединений. С возрастанием доли мартенсита наблюдается снижение ударной вязкости. Увеличение содержания углерода приводит к сдвигу в область болеенизких температур границы превращения мартенсита. У сталей ссодержанием углерода 0, 1- 0, 25 % в результате этого полное мартенситноепревращение имеет место после охлаждения со скоростью ~1С/c. С точки зрения свариваемости, мартенситно- ферритные сталиявляются “неудобными” в связи с высокой склонностью к подкалке в сварныхсоединениях этих сталей. Подкалка приводит к образованию холодныхтрещин. Склонность к образованию трещин при сварке зависит от характерараспада аустенита в процессе охлаждения. В случае формированиямартенситной структуры ударная вязкость сварных соединений 13 %-ныххромистых сталей снижается до 0, 05-0, 1 МДж/м(^(). Последующий отпускпри 650-700 С приводит к распаду структуры закалки, выделению карбидов, в результате чего тетрагональность мартенсита уменьшается. Послеотпуска ударная вязкость возрастает до 1МДж/м^2. С учётом такойвозможности восстановления ударной вязкости большинство марок хромистыхсталей имеет повышенное содержание углерода для предотвращенияобразования значительного количества феррита в структуре. Таким образомудаётся предотвратить охрупчивание стали. Однако при этом наблюдаетсяухудшение свариваемости вследствие склонности сварных соединений кхолодным трещинам из-за высокой хрупкости околошовного металла соструктурой пластинчатого мартенсита.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал