![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Более сложные задачи теории массового обслуживания
В этом параграфе мы кратко рассмотрим некоторые вопросы, относящиеся к немарковским СМО. До сих пор все формулы нами выводились или, по крайней мере, могли быть выведены читателем, вооруженным схемой гибели и размножения, формулой Литтла и умением дифференцировать. То, что будет рассказано в данном параграфе, читателю придется принять на веру. До сих пор мы занимались только простейшими СМО, для которых все потоки событий, переводящий их из состояния в состояние, были простейшими. А как быть, если они не простейшие? Насколько реально это допущение? Насколько значительны ошибки, к которым оно приводит, когда оно нарушается? На все эти вопросы мы попытаемся ответить здесь. Как это ни грустно, но надо признаться, что в области немарковской теории массового обслуживания похвастать нам особенно нечем. Для немарковских СМО существуют только отдельные, считанные результаты, позволяющие выразить в явном, аналитическом виде характеристики СМО через заданные условия задачи — число каналов, характер потока заявок, вид распределения времени обслуживания. Приведем некоторые из этих результатов. 1. n -канальная СМО с отказами, с простейшим потоком заявок и произвольным распределением времени обслуживания. В предыдущем параграфе мы вывели формулы Эрланга (20.4), (20.5) для финальных вероятностей состояний СМО с отказами. Сравнительно недавно (в 1959 г.) Б. А. Севастьянов [19] доказал, что эти формулы справедливы не только при показательном, но и при произвольном распределении времени обслуживания. ^ 2. Одноканальная СМО с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания. Если на одноканальную СМО с неограниченной очередью поступает простейший поток заявок с интенсивностью λ, а время обслуживания имеет произвольное распределение с математическим ожиданием t об = 1/μ. и коэффициентом вариации v μ , то среднее число заявок в очереди равно
а среднее число заявок в системе
Деля L оч, и L сист на λ, получим, согласно формуле Литтла, среднее время пребывания заявки в очереди и среднее время пребывания в системе:
^ 3. Одноканальная СМО с произвольным потоком заявок и произвольным распределением времени обслуживания. Рассматривается одноканальная СМО с неограниченной очередью, на которую поступает произвольный рекуррентный поток заявок с интенсивностью λ и коэффициентом вариации v λ интервалов между заявками, заключенным между нулем и единицей: 0 < v λ < 1. Время обслуживания Т об также имеет произвольное распределение со средним значением t об = 1/μ и коэффициентом вариации vμ , тоже заключенным между нулем и единицей. Для этого случая точных аналитических формул получить не удается; можно только приближенно оценить среднюю длину очереди, ограничить ее сверху и снизу. Доказано, что в этом случае
Что касается средних времен пребывания заявки в очереди и в системе, то они вычисляются через L очи L сист по формуле Литтла делением на λ. Таким образом, характеристики одноканальных СМО с неограниченной очередью могут быть (если не точно, то приближенно) найдены и в случаях, когда потоки заявок и обслуживании не являются простейшими. Возникает естественный вопрос: а как же обстоит дело с многоканальными немарковскими СМО? Со всей откровенностью ответим: плохо. Точных аналитических методов для таких систем не существует. Единственное, что мы всегда можем найти, это среднее число занятых каналов k = ρ. Что касается L оч, L сист, W оч, W сист, то для них таких общих формул написать не удается. Правда, если каналов действительно много (4—5 или больше), то непоказательное время обслуживания не страшно: был бы входной поток простейшим. Действительно, общий поток «освобождений» каналов складывается из потоков освобождений отдельных каналов, а в результате такого наложения («суперпозиции») получается, как мы знаем, поток, близкий к простейшему. Так что в этом случае замена непоказательного распределения времени обслуживания показательным приводит к сравнительно малым ошибкам. К счастью, входной поток заявок вомногих задачах практики близок к простейшему. Хуже обстоит дело, когда входной поток заведомо не простейший. Ну, в этом случае приходится пускаться на хитрости. Например, подобрать две одноканальные СМО, из которых одна по своей эффективности заведомо «лучше» данной многоканальной, а другая — заведомо «хуже» (очередь больше, время ожидания больше). А для одноканальной СМО мы худо-бедно уже умеем находить характеристики в любом случае. Как же подобрать такие одноканальные СМО — «лучшую» и «худшую»? Это можно сделать по-разному. Оказывается, заведомо худший вариант можно получить, если расчленить данную n -канальную СМО на п одноканальных, а общий поступающий на них простейший поток распределять между этими одноканальными СМО в порядке очереди: первую заявку — в первую СМО, вторую — во вторую и т. д. Мы знаем, что при этом на каждую СМО будет поступать поток Эрланга n -го порядка, с коэффициентом вариации, равным 1/
^ СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ (МЕТОД МОНТЕ-КАРЛО)
|