Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Условия монотонности функции
Мы приступаем к более сложным вопросам исследования функции Если большему значению аргумента на множестве соответствует большее значение функции, то такая функция называется, как мы помним, монотонно возрастающей на этом множестве. Аналогично вводятся понятия других монотонных функций: убывающей, неубывающей, невозрастающей. Как определить монотонность функции на данном промежутке? Мы знаем, что если производная функции положительна в точке, то она возрастает в некоторой окрестности этой точки. Отсюда следует, что если производная функции положительна на интервале, то функция является возрастающей на этом интервале. А как быть с граничными точками отрезка, как быть с теми точками, в которых производная функции равна 0 или не существует? Теорема 1. Пусть функция Доказательство. Разобьем отрезок
|