![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Непараметрические критерии
Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.) И те, и другие критерии имеют свои преимущества и недостатки. На основании нескольких руководств можно составить таблицу, позволяющую оценить возможности и ограничения тех и других (Рунион Р., 1982; McCall R., 1970; J.Creene, M.D'Olivera, 1989). Таблица 1.1 Возможности и ограничения параметрических и непараметрических критериев
Из табл. 1.1 мы видим, что параметрические критерии могут оказаться несколько более мощными, чем непараметрические, но только в том случае, если признак измерен по интервальной шкале и нормально распределен. С интервальной шкалой есть определенные проблемы (см. раздел " Шкалы измерения"). Лишь с некоторой натяжкой мы можем считать данные, представленные не в стандартизованных оценках, как интервальные. Кроме того, проверка распределения " на нормальность" требует достаточно сложных расчетов, результат которых заранее неизвестен. Может оказаться, что распределение признака отличается от нормального, и нам так или иначе все равно придется обратиться к непараметрическим критериям. Непараметрические критерии лишены всех этих ограничений и не требуют таких длительных и сложных расчетов. По сравнению с параметрическими критериями они ограничены лишь в одном - с их помощью невозможно оценить взаимодействие двух или более условий или факторов, влияющих на изменение признака. Эту задачу может решить только дисперсионный двухфакторный анализ. Уровни статистической значимости Уровень значимости - это вероятность того, что мы сочли различия существенными, а они на самом деле случайны. Когда мы указываем, что различия достоверны на 5%-ом уровне значимости, или при р Когда мы указываем, что различия достоверны на 1%-ом уровне значимости, или при р Если перевести все это на более формализованный язык, то уровень значимости - это вероятность отклонения нулевой гипотезы, в то время как она верна. Ошибка, состоящая в том, что мы отклонили нулевую гипотезу, в то время как она верна, называется ошибкой 1 рода. Вероятность такой ошибки обычно обозначается как Если вероятность ошибки - это Исторически сложилось так, что в психологии принято считать низшим уровнем статистической значимости 5%-ый уровень (р До тех пор, однако, пока уровень статистической значимости не достигнет р=0, 05, мы еще не имеем права отклонить нулевую гипотезу. В настоящем руководстве мы, вслед за Р. Рунионом (1982), будем придерживаться следующего правила отклонения гипотезы об отсутствии различий (Но) и принятия гипотезы о статистической достоверности различий (H1). Правило отклонения H0 и принятия Н1 Если эмпирическое значение критерия равняется критическому значению, соответствующему р Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения. Для облегчения процесса принятия решения можно всякий раз вычерчивать " ось значимости".
Критические значения критерия обозначены как Q0, 05 и Q0, 01 эмпирическое значение критерия как Qэмп. Оно заключено в эллипс. Вправо от критического значения Q0, 01 простирается " зона значимости" - сюда попадают эмпирические значения, превышающие Q0, 01 и, следовательно, безусловно значимые. Влево от критического значения Q0, 05 простирается " зона незначимости", - сюда попадают эмпирические значения Q, которые ниже Q0, 05, и, следовательно, безусловно незначимы. Мы видим, что Q0, 05=6; Q0, 01=9; Qэмп.=8. Эмпирическое значение критерия попадает в область между Q0, 05 и Q0, 01 - Это зона " неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (H0). но еще не можем принять гипотезы об их достоверности (H1). Практически, однако, исследователь может считать достоверными уже те различия, которые не попадают в зону незначимости, заявив, что они достоверны при р Уровень статистической значимости или критические значения критериев определяются по-разному при проверке направленных и ненаправленных статистических гипотез. При направленной статистической гипотезе используется односторонний критерий, при ненаправленной гипотезе - двусторонний критерий. Двусторонний критерий более строг, поскольку он проверяет различия в обе стороны, и поэтому то эмпирическое значение критерия, которое ранее соответствовало уровню значимости р Мощность критериев Мощность критерия – это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
|