яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






нЕЙРОНАЛЬНЫЕ ТРАНСПЛАНТАНТЫ






Наиболее распространенными заболеваниями ЦНС человека являются болезни, обусловленные спонтанной дегенерацией нейронов, такие как болезни Паркинсона, Альцгеймера и Хантингтона Большинство нервных клеток у взрослых являются постмитотическими; в настоящее время неизвестны физиологические механизмы восстановления утерянных нейронов. Одним из подходов для замещения погибших нервных клеток, предпринятых Бьерклундом и коллегами, являлась трансплантация нервных клеток эмбриона в мозг взрослого организма133). В отличие от нейронов взрослого организма, погибающих при трансплантации, нервные клетки эмбрионов или новорожденных животных после перемещения в серое вещество ЦНС взрослого выживали и развивались (рис. 24.19). Имплантированные клетки дифференцировались, проращивали аксоны и освобождали нейротрансмиттеры из нервных терминалей.

Ярким примером такого рода являются эксперименты, в которых после разрушения дофамин-содержащих нейронов черной субстанции эмбриональные нейроны были трансплантированы в базальные ганглки крысы. Гибель нейронов черной субстанции воспроизводит дефицит, напоминающий болезнь Паркинсона у людей134). У нормальных животных дофаминергические нейроны черной субстанции, располагающиеся в среднем мозге, иннервируют клетки базальных ганглиев (часть мозга, вовлеченная в программирование движений, главы 14 и 22, аппендикс С). При одностороннем повреждении этого дофаминового тракта результатом было нарушение движения; в ответ на стрессовый сигнал животное поворачивалось в сторону повреждения. Эта асимметрия движений исчезала после трансплантации в базальные ганглии на стороне повреждения дофаминсодержаших эмбриональных нейронов черной субстанции135). Улътраструктурные исследования показали, что трансплантированные нейроны удлиняют аксоны, проникая в окружающие участки мозга и формируя синапсы с нейронами реципиента.

Степень функциональной компенсации в результате операции трансплантации нейронов зависит от успешности восстановления синаптических контактов. Удивительно, что полноценная интеграция нейронов в сложную нейрональную сеть мозга происходит нормально у взрослого 136). Так же хорошо у взрослых происходит восстановление после имплантации эмбриональной ткани в поврежденную кору, гиппокамп и полосатое тело133). Трансплантированная в мозг новорожденной крысы эмбриональная сетчатка способна к формированию специфических функциональных синапсов, восстанавливая таким образом соответствующие зрительные рефлексы137). Трансплантация эмбриональной энторинальной коры взрослым крысам с повреждениями энторинальной коры головного мозга может реиннервировать деафферентированные зоны гиппокампа, формировать синаптические контакты и частично восстанавливать дефицит пространственной памяти138· 139).

Ярким примером регенерации нервной системы является анатомическая и функциональная интеграция трансплантированных эмбриональных клеток Пуркинье мозжечка у взрослой мутантной мыши с дегенерацией


600                                                 Раздел IV. Развитие нервной системы

Рис. 24.20. Реконструкция нейрональной сети мозжечка трансплантацией мозговой ткани эмбриона во взрослую мутантную мышь (pcd), y которой клетки Пуркинье дегенерируют вскоре после рождения. (А) Цельные участки мозжечковой ткани от 12-дневного эмбриона (Е12) были инъецированы в мозжечок 2-4-месячных pcd мышей. (В) К 4-5 дню после трансплантации клетки Пуркинье мигрировали от трансплантанта по линии, касательной к мозговой поверхности. Через 6-7 дней после трансплантации клетки Пуркинье начинали мигрировать в радиальном направлении внутрь ткани мозжечка по глиальным клеткам Бергмана, пронизывая молекулярный слой. (С) Донорские клетки Пуркинье, находящиеся на расстоянии не более 600 мкм от глубинных ядер мозжечка (ГЯМ) реципиента, тянут аксоны к ГЯМ и формируют синаптический контакт на специфических мишенях. Те же донорские клетки Пуркинье, которые располагаются на большем расстоянии, контактируют преимущественно с донорскими же клетками ГЯМ, попавшими сюда вместе с трансплантантом. Fig. 24.20. Reconstruction of Cerebellar Circuits by transplantation of embryonic cerebellar tissue into an adult pcd mouse, a mutant in which Purkin je cells degenerate shortly after birth. (A) Solid pieces of cerebellar primordium from a 12-day embryo (E12) were injected into the cerebellum of a 2-to 4-month-old pcd mouse. (B) By four to five days after transplantation, Purkinje cells have migrated out of the graft tangentially along the cerebellar surface. During days six and seven after transplantation, Purkinje cells migrate radially inward along Bergmann glial cells, penetrating the host molecular layer. (C) Donor Purkinje cells that lie within 600 /ш of the host deep cerebellar nuclei (DCN) extend axons into the DCN and make synaptic contacts on their specific targets. Donor Purkinje cells farther from the host DCN make contact with donor DCN cells in the graft remnant. (After Sotelo and Alvarado-Mallart, 1991.)

собственных клеток Пуркинье (рис. 24.20)140). Сотело и его коллеги трансплантировали диссоциированные клетки Пуркинье либо целые кусочки эмбриональной ткани в мозжечок взрослой мутантной мыши. Донорские клетки Пуркинье мигрировали из трансплантанта в зоны, где исходно располагались дегенерировавшие впоследствии клетки Пуркинье. Они продвигались вдоль глиальных клеток Бергмана, в которых была индуцирована экспрессия белков, управляющих движением донорских клеток Пуркинье141). Через 2 недели многие трансплантированные клетки формировали дендритные деревья, похожие на разветвления обычных клеток Пуркинье, лиановидные волокна образовывали синапсы сначала на клеточном теле, затем на проксимальных дендритах, а параллельные волокна иннервировали дистальные дендриты. Характерные синаптические потенциалы были зарегистрированы после стимуляции входов лиановидных и мшистых волокон. Тем не менее имплантированные клетки редко устанавливали синаптические связи с их обычны-


Глава 24. Денервация и регенерация синаптических связей 601

ми мишенями в глубоких ядрах мозжечка. Вместо этого они стремились установить связи с донорскими нейронами, перенесенными и выжившими в составе трансплантанта. Несмотря на это, проведенные эксперименты демонстрируют, что трансплантированные нервные клетки могут в значительной мере интегрироваться в нейрональную сеть взрослого организма.

Ясно, что многое нейроны ЦНС млекопитающих сохраняют даже во взрослом состоянии удивительную способность к регенерации аксонов и дендритов и восстановлению соответствующих синаптических связей. Главной причиной несостоятельности регенерации после большинства повреждений ЦНС является ингибирование врожденных регенеративных возможностей факторами, производимыми глиальными клетками и трофическими молекулами, влияющими на рост нейронов. Идентификация механизмов подавления эндогенных тормозных факторов является областью активных научных исследований, так же как и изучение нейрональных стволовых клеток, представляющих собой потенциальный источник новых глиальных клеток и нейронов, чьи свойства могут быть адаптированы методами генной инженерии (глава 23) 142). Успехи в этой области в сочетании с развитием трансплантационной техники дают надежду на восстановление функционального дефицита, возникающего в результате повреждений и нейродегенеративных заболеваний ЦНС.

выводы

∙ При перерезке аксона в нервной системе позвоночных происходит дегенерация дистального отдела нерва. Аксотомированная клетка либо подвергается хроматолизу, либо погибает.

∙ Многие пресинаптическиетерминали, иннервирующие аксотомированные нейроны, подвергаются ретракции; оставшиеся окончания освобождают сниженное количество квантов нейротрансмиттера.

∙ В денервированных скелетных мышечных волокнах в экстрасинаптических участках происходит синтез и экспрессия новых АХ рецепторов, что делает мышцу гиперчувствительной к АХ. Денервированные нейроны также становятся гиперчувствитель-

ными к трансмиттерам, освобождающимся из поврежденных синаптических аксонов.

∙ Мышечная активность является важным фактором, определяющим количество АХ рецепторов и их распределение. Мышечная активность влияет также на скорость деградации и восстановления АХ рецепторов.

∙ У взрослых млекопитающих или лягушки иннервированная мышца не принимает иннервации дополнительным нервом. В отличие от этого, нервные волокна способны формировать новые синапсы на денервированных или поврежденных мышечных волокнах.

∙ Частично денервированные мышцы и нейроны способны вызвать рост новых разветвлений у неповрежденных близлежащих нервов и формирование новых синапсов.

∙ Шванновские клетки периферической нервной системы обеспечивают особое окружение нейронов, стимулирующее рост аксонов.

∙ Синаптический участок базальной мембраны, окружающий мышечные волокна, ассоциирован с таким фактором, как агрин, который индуцирует синаптические специализации в регенерирующих окончаниях аксонов и мышечных волокнах. Агрин является протеогликаном, синтезирующимся двигательными нейронами и освобождающимся из окончаний их аксонов. После выделения он становится ассоциированным с синаптической базальной мембраной и индуцирует формирование пре- и постсинаптических специализаций.

∙ Центральная нервная система взрослых млекопитающих обладает ограниченными возможностями для регенерации.

∙ Шванновские клетки в форме периферического нервного трансплантанта или инъецированные как клеточная суспензия в зону повреждения создают благоприятное окружение для роста аксонов нейронов ЦНС млекопитающих.

∙ В ЦНС эмбрионов и новорожденных млекопитающих способна происходить эффективная регенерация после повреждения.


602                                                 Раздел IV. Развитие нервной системы

Нейроны эмбрионов или новорожденных животных, так же как и нейроны и глиальные клетки, происходящие от нейрональных стволовых клеток, выживают и растут при трансплантации в ЦНС взро-

слого млекопитающего. Трансплантированные клетки могут быть интегрированы в существующие нейрональные сети и частично восстанавливать утерянную функцию.


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2025 ЦНД. (0.006 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК