![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Саморазвивающиеся синергетические системы и стратегия научного поиска.
Для анализа процессов эволюции сложных систем, в том числе исторически развивающихся и глобальных, нам необходимо обратиться к рассмотрению такого нового междисциплинарного направления исследований, которое получило название синергетики. Автор самого термина «синергетика» (от греч. synergeticos — совместно действующий) немецкий физик Г. Хакен в предисловии к первому изданию своей книги писал: «Я назвал новую дисциплину «синергетикой» не только потому, что в ней исследуется совместное действие многих элементов систем, но и потому, что для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин»'. Синергетику теперь стали рассматривать как парадигму исследования сложноорганизованных систем, которая находит широкое применение не только в естественных и технических науках, но все активнее вторгается в социально-экономическое и гуманитарное знание. Прогресс в познании сложных систем способствовал преодолению противопоставления простого и сложного, пониманию их относительности, а самое главное — раскрытию роли сложноорганизованных процессов в ходе эволюции и развития систем неорганического, органического и социального мира. Синергетика – теория самообразования и развития свободных природных открытых сложных систем. Для того чтобы отразить наблюдаемые закономерности сложных систем используются применяемые в синергетике такие понятия как диссипативная структура, бифуркация, флюктуация, хаотичность, странные аттракторы, нелинейность, неопределенность, необратимость и т.д. Синергетика взаимодействует с системами сложного строения, образованными посредством хаотичных связей стоящих на различных уровнях развития. На такие системы можно смотреть как «эволюционное целое». Г.Хакен так описывает ключевые положения синергетики систем: синергетические системы состоят из несклонных или многих одинаковых или разнородных частей, которые находятся во взаимодействие друг с другом. Синергетические системы являются нелинейными; синергетические системы, которые изучаются в физике, химии и биологии как открытие системы находятся далеко от состояния теплового равновесия; синергетические системы подвержены внутренним и внешним колебаниям; так как синергетические системы открытие могут стать нестабильными; в синергетических системах обнаруживаются эмерджентные новые качества; в синергетических системах возникают пространственные, временные или функциональные структуры; новые структуры которые возникают в синергетических структурах могут быть упорядоченными или хаотичными. Синергетика раскрывает внутренний взаимосвязь порядка и хаоса. До возникновении синергетики думали, что хаос есть хаос, он никак не может превратиться в порядок. Но, Хакен открыв закономерности открытых систем, тем самым доказал, что системный фактор состоит не в хаотичности, а в динамике, в взаимодействии. Хаос тоже динамична как и порядок. А это доказывает, что хаос вовсе не находятся в отрыве от порядка, в хаосе рождаются порядок, упорядоченность. Таким образом, если в классическом естествознании хаос играл чисто негативную роль, являясь символом дезорганизации, неструктурности и разрушения порядка, то в синергетике он выпускает в качестве конструктивного фактора. Так как с одной стороны, из хаоса или беспорядка возникает порядок, а с другой стороны – сам хаос представляет собой сложную форму упорядоченности. Таким образом, синергетика изучает развивающуюся закономерность образования сложных структур от более простых структур. В этом случае синергетика исходит из принципа о том, что объединение структур не может быть заменено простой сборной операцией, здесь целое уже не совокупность ее частей, не больше и не меньше их, это целое просто новое качественное состояние. Один из основоположников синергетики Г.Хакен выдвинул такой вопрос: какие общие особенности можно обнаружить в развитии различных природных и социальных систем? И он так отвечал на свой вопрос: общее – само по себе создание структуры; качественные изменения, происходящие на макроскопическом уровне; появление нового качества посредством эмерджентного способа; процесс самообразования, который встречается в открытых системах. По мнению Хакена, синергетический взгляд отличается от традиционного взгляда переходом от оценки простых систем к изучению сложных систем; от оценки закрытых систем к изучению открытых систем; от оценки линейных систем к изучению нелинейных систем; от оценки равновесия процессов к изучению их делокализации и нестабильности. Несмотря на то, что зарождение синергетики связано с именами Г.Хакена, И.Пригожина и других на формирование ее основных идей, большое влияние оказали также диалектика Шеллинга, Гегеля, Маркса. Несмотря на то, что многие об этом умалчивают, один из основоположников синергетики И.ПРигожин, признавая это, писал, что «природа подтверждает существование иерархии в философии, когда каждый уровень требует предшествующий ему уровень». Согласно этому Пригожин однозначно отмечает, что идея истории природы, как составная часть материализма, принадлежала К.Марксу, была всесторонне развита Ф.Энгельсом. Несмотря на признание Пригожина, часть современных ученых не видя связи между диалектикой и синергетикой, предполагала, что диалектика прекратила свое существование и поэтому ее нужно заменить синергетикой. Однако с такой идеей, конечно, нельзя согласиться, так как в довершение того, что существует общая теория развития и универсальный познавательный метод, диалектика – одно из больших достижений мировой философской мысли, им и останется. Значительный импульс исследованию процессов самоорганизации в наше время придало возникновение кибернетики, которая обобщила принцип отрицательной обратной связи. Благодаря этому удалось объяснить существование устойчивых динамических систем, явления гомеостаза, существование на рынке спонтанного порядка, выражающегося в установлении равновесия между спросом и предложением и многие другие процессы, опирающиеся на принцип сохранения динамического равновесия. Однако этот принцип объясняет лишь сохранение и поддержание устойчивости динамических систем, но не раскрывает, каким образом такая устойчивость и порядок возникают. Между тем подлинная самоорганизация по самому смыслу этого термина означает именно изменение прежней организации, порядка или структуры и появление нового порядка и структуры в результате изменения взаимодействия между элементами системы. Точнее говоря, причины такого изменения поведения элементов системы, их самоорганизации следует искать в процессе взаимодействия элементов системы с внешней средой. Но большинство автоматов и технических устройств, сконструированных в кибернетике, опираются, по сути дела, на внешнюю организацию, то есть «самоорганизация» в них заранее запланирована и организована человеком-конструктором. В отличие от этого самоорганизация и, основанная на ней эволюция в живой природе и обществе, отнюдь не сводятся к сохранению динамического равновесия. Именно это глубокое различие между неживой и живой природой долгое время оставалось неразрешимым противоречием между классической термодинамикой и эволюционным учением Ч. Дарвина. Важнейшая заслуга синергетики состоит в том, что она впервые сумела приблизиться к разрешению этого противоречия. Она экспериментально и теоретически доказала, что самоорганизация при наличии вполне определенных условий может происходить уже в простейших физико-химических, и других системах неорганической природы. К формулировке основной идеи новой парадигмы самоорганизации разные ученые подходили, опираясь на свои конкретные исследования в разных областях науки. Исследования Г. Хакеном механизма работы лазеров, начатые в 1960 г., убедили его в том, что в них процесс самоорганизации начинается с возникновения когерентного, кооперативного движения молекул или атомов, образующих активную среду лазера. Поэтому в своем определении синергетики он подчеркивает именно кооперативныйхарактер процессов самоорганизации. Как признается он сам, в то время он решал частную проблему и не пытался распространить полученные выводы на другие самоорганизующиеся системы. Другое направление исследований было связано с изучением кинетики химических реакций в рамках теории необратимых процессов неравновесной термодинамики. Как показали эксперименты отечественных ученых Б.П. Белоусова и A.M. Жаботинского, в физико-химических системах в процессе самоорганизации к энергетическому обмену добавляется обмен веществами, участвующими в химической реакции. Кроме того, для поддержания и ускорения процесса самоорганизации здесь применяются различные виды катализа. В математической модели, описывающей эти эксперименты, известный бельгийский ученый И. Пригожий, русский по происхождению, подчеркивает особое значение именно неравновесности и удаленности системы от точки термодинамического равновесия, как исходных условий для начала ее самоорганизации. Системы и структуры такого рода он называет диссипативными именно потому, что они возникают за счет диссипации, или рассеяния, в окружающую среду использованной, деградированной энергии и вещества. Взамен этого система получает из окружающей среды свежее вещество или энергию. Поскольку диссипация энергии ассоциируется с выведением беспорядка в среду, а получение новой энергии — с приобретением порядка, то вслед за Э. Шредингером взаимодействие между системой и ее средой стали рассматривать как обмен беспорядка на порядок. Вместе со своими сотрудниками И. Пригожий значительно продвинул разработку теории самоорганизующихся физико-химических процессов, за что был удостоен Нобелевской премии по химии за 1977 г. В эти же годы Э. Лоренц, разрабатывая глобальную компьютерную модель для предсказания погоды, пришел к удивительному открытию. Используя ту же самую систему уравнений, с почти одинаковыми начальными условиями, он обнаружил, что они приводят к разным результатам. Детерминистическая система уравнений оказывалась «чувствительной» к начальным условиям и ее «поведение» оказывалось хаотическим. Но этот хаос обладал сложным, внутренним порядком или регулярностью, так что понятия порядка и регулярности, с одной стороны, и беспорядка и иррегулярности, с другой, оказывались относительными. Их нельзя было, поэтому противопоставлять друг другу в абсолютном смысле. Хаос оказывался специфической системой, обладающей весьма сложным порядком. Осознание общности и аналогии этих конкретных процессов, как процессов самоорганизации в сложных системах, появилось во второй половине 70-х годов XX в. Еще раньше было замечено, что вопреки различию отдельных подходов, исследователи пользовались при этом аналогичным математическим аппаратом, сходными, хотя и разными по названию понятиями и принципами. Признание общности и единства, разных по своей природе самоорганизующихся процессов постепенно привело ученых к необходимости создания междисциплинарного направления своих исследований. Синергетический анализ сложноорганизованных систем. Важнейшим условием возникновения самоорганизации является наличие открытой системы, которое противоположно понятию закрытой системы классической термодинамики. Одно из первых определений этого понятия принадлежит выдающемуся австрийскому физику Э. Шредингеру, который сформулировал его в своей книге «Что такое жизнь с точки зрения физики?». В ней он подчеркнул, что характерная особенность биологических систем состоит в обмене энергией и веществом с окружающей средой. Средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), указывал он, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. Взаимодействуя со средой, открытая система не может быть равновесной. С поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете, прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Со временем между элементами системы возникают новые взаимосвязи и появляются кооперативные процессы, которые приводят к коллективному поведению элементов системы. Именно кооперативные процессы приводят к образованию новых динамических структур. Так схематически могут быть описаны процессы самоорганизации в открытых системах. Наглядной иллюстрацией процессов самоорганизации может служить работа лазера, с помощью которого можно получать мощные потоки излучения. Не вдаваясь в детали его функционирования, отметим, что хаотические колебательные движения, например, молекул газа, составляющего активную среду лазера, приводятся в согласованное, коллективное движение благодаря поступлению энергии извне, в данном случае электрического разряда. Вследствие этого молекулы газа начинают колебаться в одинаковой фазе и, благодаря интерференции, мощность лазерного излучения многократно увеличивается. Этот пример показывает, как флуктуации, или случайные колебания элементов системы при поступлении энергии извне, приходят в когерентное, согласованное движение. Другим примером может служить самоорганизация, которая возникает в химических реакциях. В них она связана с поступлением извне новых химических реагентов, то есть веществ, обеспечивающих продолжение реакции, с одной стороны, и удаление в окружающую среду продуктов реакции, с другой. Самоорганизация обнаруживается здесь в появлении на поверхности раствора различных пространственных образований, концентрических волн, или периодическом изменении цвета раствора. Например, раствор может периодически менять свою окраску с синего цвета на красный цвет, и обратно, явление, которое впоследствии было названо «химическими часами». Самоорганизация и новые стратегии научного поиска. Широкое использование парадигмы самоорганизации в естественных науках и технике, а также постепенное проникновение ее принципов в экономические и социально-гуманитарные науки выдвигают проблему поиска новых стратегий научного поиска. Такая стратегия необходима для поиска решений ряда не только конкретных, но и глобальных общенаучных и мировоззренческих проблем. Состоит ли окружающий нас мир из разнообразных по содержанию и форме самоорганизующихся систем? Возникла ли живая природа в результате случайного стечения чрезвычайно невероятных обстоятельств, условий и факторов, как на этом настаивали некоторые известные биологи, или же она является результатом процесса самоорганизации, начавшегося в неорганической природе? Как самоорганизация и организация взаимодействуют в обществе? На все эти вопросы синергетика помогает найти правильный ответ, или, по крайней мере, наметить верную стратегию поиска, хотя это требует, конечно, основательных дальнейших исследований. Мы ограничимся выяснением преимуществ синергетической стратегии научного поиска перед широко распространенной традиционной стратегией изучения сложных систем. Традиционный подход к изучению поведения сложных систем состоит в редукции, или сведении их к поведению простых элементов. Например, чтобы объяснить поведение сложных систем на макроуровне, исследователь стремится свести их к процессам на микроуровне, наделяя микрообъекты (например, атомы или другие ненаблюдаемые объекты) простыми свойствами. Синергетика же стремится понять связь и взаимодействие между микро- и макропроцессами как таковыми и поэтому не рассматривает свойства ненаблюдаемых объектов. Она тщательно изучает изменения, которые происходят на наблюдаемом, макроскопическом уровне как результат взаимодействия огромного числа элементов или частиц системы на ненаблюдаемом микроуровне. Основная идея, выдвигаемая синергетикой, заключается в том, что сложные системы качественно меняют свое макроскопическое состояние в результате изменений, происходящих на микроуровне. Эти изменения недоступны для непосредственного наблюдения, но их совокупный результат доступен для наблюдения и описывается управляющими параметрами системы. При критическом значении этих параметров система переходит в новое макроскопическое состояние. Установить связь между невидимыми изменениями на микроуровне и видимыми изменениями на макроуровне, так же как и определить критические значения управляющих параметров из чисто абстрактных, теоретических соображений не представляется возможным. Поэтому здесь прибегают к конкретному исследованию сложноорганизованных систем с помощью наблюдений или экспериментов. Например, в реакции Белоусова — Жаботинского — управляющим параметром служит концентрация химических веществ, в лазере — напряженность электромагнитного поля внутри него. Изменяя управляющие параметры, можно достичь критического значения, когда система резко и спонтанно переходит в качественно новое состояние. Анализ поведения системы при переходе от прежнего состояния к новому состоянию в критической точке имеет решающее значение для понимания процесса самоорганизации. Именно здесь ясно прослеживается взаимосвязь между случайностью и необходимостью в процессе самоорганизации системы. Флуктуации, представляющие собой случайные отклонения системы от равновесия в ходе взаимодействия со средой и возрастания неравновесности системы, постепенно усиливаются, пока не достигнут определенной критической точки, в которой и происходит превращение случайных изменений в детерминированное, необходимое движение системы. Однако какое направление дальнейшего движения или траекторию после критической точки «выберет» при этом система, зависит в свою очередь от ряда случайных обстоятельств. Используя знакомый нам термин бифуркации, можно сказать, что в зависимости от сложившихся случайных обстоятельств, система может «выбрать», по меньшей мере, две возможные траектории будущего движения. Предсказать, какой конкретно путь «выберет» система, невозможно. Возвращаясь к вопросу о взаимосвязи между микро- и макроуровнем в процессе самоорганизации, следует подчеркнуть, что при постепенном изменении системы на микро уровне обычно возникает множество различных конфигураций состояний и их будет тем больше, чем большее число компонентов содержит система. Но все такие конфигурации управляются параметрами порядка. Этот принцип управления параметрами порядка впервые четко сформулировал Хакен, который сравнивает его с действиями кукловода. «В определенном смысле, — пишет он, — параметры порядка действуют как кукловоды, заставляющие марионеток двигаться. Однако между наивным представлением о параметрах порядка как о кукловодах и тем, что происходит в действительности, имеется одно важное различие. Оказывается, что, совершая коллективное действие, индивидуальные части системы, или «куклы», сами воздействуют на параметры порядка, т.е. На «кукловодов». Принцип подчинения параметрам порядка играет важнейшую роль в понимании процессов самоорганизации. В каждом таком процессе параметров порядка существует сравнительно немного, в то время как система может состоять из большого числа компонентов, которые могут создавать огромное количество состояний. Введение параметров порядка значительно облегчает анализ самоорганизующихся процессов и проливает дополнительный свет на понимание категории причинности в современном научном познании. Если традиционное понимание линейной причинности предполагает, что только причина вызывает или порождает действие, то процессы самоорганизации ясно показывают, что действия также могут оказывать влияние на породившую их причину или причины. Действительно, поведение компонентов системы подчиняется и управляется параметрами порядка, но в то же время сами параметры порядка возникают в результате взаимодействия компонентов системы. Так возникает представление о циклической причинности, включающее признание обратного влияния действия на породившую его причину.
|