Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение задач линейного программирования графическим методом
Необходимо найти минимальное значение целевой функции F = 3x1-x2 → min, при системе ограничений:
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом). Построим уравнение -3x1+2x2 = 6 по двум точкам. Для нахождения первой точки приравниваем x1 = 0. Находим x2 = 3. Для нахождения второй точки приравниваем x2 = 0. Находим x1 = -2. Соединяем точку (0; 3) с (-2; 0) прямой линией. или Границы области допустимых решений Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Рассмотрим целевую функцию задачи F = 3x1-x2 → min. Равный масштаб Область допустимых решений представляет собой многоугольник Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (1) и (7), то ее координаты удовлетворяют уравнениям этих прямых: Решив систему уравнений, получим: x1 = 0, x2 = 3
|