Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Глава 6. Развитие статической силовой выносливости мышц предплечья.
6.1 Энергообеспечение при статическом напряжении мышц предплечья. Длительный хват может быть природным или натренированным. У нетренированных людей максимальное время виса определяется природными способностями мышц-сгибателей пальцев к выполнению статической работы. Если это время невелико, и составляет 1.5 – 2 минуты, для достижения высокого результата в подтягивании им требуется специально развивать статическую выносливость. Причём, чем меньше природные способности, тем большую часть тренировочного времени придётся уделять развитию статической выносливости мышц-сгибателей пальцев. Можно сказать, что у спортсменов с изначально малым максимальным временем виса тренировка должна быть преимущественно направлена на развитие статики. Неуверенный контакт с перекладиной затрудняет работу мышц, выполняющих подъём туловища, а многочисленные перехваты съедают время, отведённое на подтягивания. Кроме того, портится техника, что выражается в увеличении амплитуды раскачивания в фазе виса, увеличении времени опускания в вис, появлении ошибок. Так, перенос внимания спортсмена на кисти при появлении проблем с хватом автоматически ведёт к ослаблению контроля за ногами, в результате чего спортсмен может неосознанно отводить пятки назад с последующим рывком или выносить вперёд ноги, согнутые в коленных суставах, что квалифицируется судьями как ошибки. Чем на больший результат рассчитывает спортсмен, тем большее время ему нужно удерживать надёжный хват и тем меньшим количеством перехватов он должен обходиться при выполнении соревновательного упражнения. Кроме того, при ослаблении хвата и выполнении перехватов нарушается ритм подтягиваний, что приводит к невозможности использовать упругие свойства мышц так, как это происходит при ритмичном выполнении подтягиваний. Давно замечено, что первое подтягивание после перехвата или других действий, сопровождающихся нарушением ритма, субъективно воспринимается спортсменом как более трудоёмкое, чем подтягивания, выполняемые ритмично. Многолетняя практика показывает, что длительность виса поддаётся тренировке, но для этого приходится прилагать значительные усилия в течение длительного периода напряжённых тренировок. При этом натренированный вис – в отличие от природного – не сохраняется при прекращении тренировок, поэтому при длительных перерывах (по болезни или иным причинам) приходится всё начинать практически с нуля. При попытке развития статической выносливости спортсмен сталкивается с некоторыми трудностями. Первая заключается в том, что развитие статической силовой выносливости мышц-сгибателей пальцев должно происходить на фоне динамической работы по подъёму туловища. Другими словами, развивать вис приходится не изолированно от тяги, а совместно с ней. Тренировка «чистого» виса, т.е. виса в фазе ИП, ничего не даёт. Хотя «чистый» вис легче поддаётся тренировке, это слабо отражается на результате в подтягивании. Можно предположить, что это связано с различными режимами кровообращения в мышцах верхних конечностей. При интенсивной динамической работе мышцы, производящие подъём/опускание туловища замыкают на себя кровоток так, что мышцы предплечий оказываются на голодном пайке. При выполнении же «чистого» виса кровоснабжение мышц предплечий происходит в более благоприятных условиях Вторая трудность состоит в том, что для развития статической выносливости мышц предплечий время работы в каждом подходе должно быть как можно больше и уж никак не меньше 2 – 2, 5 минут. Но тогда при подтягивании в обычном темпе количество подтягиваний в каждом подходе будет составлять 30 – 35 раз, что для многих спортсменов просто нереально. Если же время подхода будет меньше двух минут, аэробный механизм энергообеспечения не будет успевать разворачиваться, и подтягивание будет производиться преимущественно за счёт гликолиза. А это нам совсем ни к чему. Следующая трудность связана со сроками восстановления после тренировки, направленной на развитие статической выносливости. Необходимость задействовать аэробный механизм энергообеспечения приводит к тому, что большинство подходов, направленных на развитие статики, должны выполняться до отказа. Несколько подходов до отказа, выполненных в течение одной тренировки, вводят мышечную и нервную систему спортсмена в состояние глубокого утомления. Соответственно, и период восстановления после такой нагрузки будет существенно больше, чем после среднестатистической тренировки. Вспомним, что происходит в мышцах спортсмена, который срывается с перекладины из-за ослабления хвата. Когда спортсмен начинает подтягивание, нагрузка на мышцы практически скачком возрастает от минимальной (уровень покоя) до максимальной для данного упражнения (фаза подъёма туловища). В энергообеспечении мышечной деятельности участвуют все механизмы ресинтеза АТФ – как анаэробные, так и аэробные, при этом вклад каждого механизма, учитывая ограниченную продолжительность выполнения подтягиваний, зависит от таких характеристик как мощность, ёмкость и время выхода на максимальную мощность. Уже в ходе первого подтягивания концентрация АТФ в мышцах резко падает, в результате чего ответственность за её ресинтез ложится на креатинфосфатный способ, имеющий минимальное время выхода на максимальную мощность – порядка 1-2 секунды. Малое время развёртывания и высокая максимальная мощность энергопродукции являются главными преимуществами креатинфосфатного пути ресинтеза АТФ. Но вот ёмкость этого механизма такова, что на полную мощность он может функционировать всего 8-10 секунд, после чего выработка АТФ начинает уменьшаться в связи с уменьшением концентрации креатинфосфата в мышцах, и к 30 секунде работы скорость энергопродукции с помощью креатинфосфатной реакции снижается приблизительно вдвое. При уменьшении количества АТФ соответственно увеличивается количество АДФ, что приводит к активации механизмов гликолитического и аэробного окисления. Интенсивность дыхания увеличивается, но, несмотря на то, что спортсмену приходится перейти на подтягивание с двумя циклами дыхания на каждый цикл подтягиваний, возможностей аэробного пути энергообеспечения пока явно недостаточно, так как время его выхода на максимальную мощность ещё не пришло – на это требуется две-три минуты. Механиз аэробного ресинтеза АТФ нетороплив – к тому моменту, когда он начинает работать на полную мощность, подтягивание уже выходит на финишную прямую. Гликолиз включается гораздо быстрее, его время выхода на максимальную мощность энергопродукции составляет 20-30 секунд. Этот механизм подхватывает эстафету ресинтеза АТФ у креатинфосфатного механизма энергопродукции, после чего события в организме спортсмена начинают развиваться в неприятном, а точнее в катастрофическом для мышц-сгибателей пальцев направлении. В результате снижения интенсивности работы креатинфосфатной реакции гликолиз остаётся хотя и не единственным, но господствующим путём ресинтеза АТФ. Молочная кислота, образующаяся в процессе гликолиза, накапливается внутри мышечных клеток, повышая их кислотность. В условиях повышенной кислотности снижается каталитическая активность некоторых ферментов, в том числе ферментов самого гликолиза, что ведёт к уменьшению скорости этого пути ресинтеза АТФ. Получается парадоксальная ситуация: чем выше скорость протекания гликолиза, тем быстрее и больше выделяется молочной кислоты и тем быстрее начинает снижаться скорость гликолиза. Вот таким нехитрым способом (который в технике называется механизмом отрицательной обратной связи), организм старается привести в соответствие уровень нагрузки и свои энергетические возможности. Но уменьшение мощности гликолиза - это одна беда и с ней можно было бы бороться, ещё больше увеличив паузу отдыха в висе и перейдя на подтягивание с тремя и более циклами дыхания, задействуя аэробный механизм энергообеспечения, который к середине второй минуты уже начинает поднимать голову. Но не тут то было - беда никогда не приходит одна. В связи с перераспределением кровотока в пользу расположенных ближе к сердцу мышц, выполняющих интенсивную динамическую работу по подъёму и опусканию туловища, наблюдается ограниченное поступление кислорода к мышцам предплечья. Кровь, несущая кислород для аэробного окисления, с трудом пробивается через плечо к предплечью, но на этом её трудности не заканчиваются, потому что капиллярная сеть предплечья пережата статически напряжёнными мышцами. При этом затруднена не только доставка кислорода к работающим мышцам, но и вывод из них продуктов обмена. А накопление лактата в мышечных клетках очень некстати ведёт к набуханию этих клеток из-за поступления в них воды из межклеточного пространства, что в итоге уменьшает сократительные возможности мышц [11]. Оказывается, мышцы «дубеют» в том числе и из-за особенности лактата связывать повышенное количество воды. «Кислотный дождь», проливающийся в статически работающих мышцах предплечья, нарушает работу механизма аэробного окисления. В условиях повышенной кислотности снижается активность ферментов аэробного ресинтеза АТФ, ухудшаются возможности использования кислорода в митохондриях – внутриклеточных структурах, в которых при участии кислорода происходит ресинтез АТФ. Разбухание мышц предплечья дополнительно сдавливает кровеносные сосуды, что не только затрудняет приток крови, но и препятствует её оттоку и выводу молочной кислоты в кровяное русло. Концентрация лактата в мышечных клетках начинает не просто стремительно расти – она увеличивается лавинообразно. Резкое закисление мышц приводит к падению мощности ресинтеза АТФ, её концентрация в сократительном аппарате мышечных клеток – миофибриллах – уменьшается настолько, что силы сокращения мышц становится недостаточно для удержания надёжного хвата. Кисти начинают ползти, для улучшения контакта с грифом перекладины спортсмен, прилагая неимоверные волевые усилия, пытается делать перехваты. Пару раз ему это удаётся, но неизбежно наступает момент, когда пальцы перестают слушаться. Кисти разжимаются и происходит срыв с перекладины. Физкульт-привет молочной кислоте. Что делать? Ну, во-первых, не впадать в отчаяние и попытаться хладнокровно разобраться в том, как заставить мышцы сокращаться при минимальном использовании гликолиза. Здесь важна постановка вопроса именно о минимизации вклада гликолиза, а не о развитии его возможностей путём тренировки. Дело в том, что традиционные рекомендации по увеличению выносливости при работе длительностью до 5 минут сводятся к тому, чтобы тренировочный процесс был направлен на решение двух задач. Во-первых, с помощью тренировок требуется увеличить содержание в мышцах основного «сырья» для протекания гликолиза – гликогена. А во вторых, тренировки должны приводить к повышению сопротивляемости (резидентности) накоплению лактата и повышению кислотности, а для этого необходимо, чтобы при каждом тренировочном воздействии нагрузки происходило образование и накопление большого количества лактата. Таким образом, при традиционном подходе целью каждой тренировки, направленной на развитие выносливости для работы продолжительностью не более 5 минут является получение в мышцах ударной дозы лактата и резкое снижение в них содержания гликогена. Когда речь идёт о динамической нагрузке, такой подход скорее всего сработает. Так, если спортсмену нужно улучшить результат в беге на 1 километр с 3, 00 до 2, 30, то нужно иметь в виду, что ему требуется увеличить мощность работы при одновременном снижении её продолжительности. Но спортсмену, которому хочется увеличить время надёжного хвата с 2 до 4 минут, нужно добиться увеличения продолжительности работы при её неизменной мощности. Разница есть и её можно попытаться использовать в своих целях. Итак, нам необходимо увеличить продолжительность статического сокращения мышц до 4 минут, а это больше, чем время работы гликолитического механизма с максимальной мощностью энергопродукции, составляющее 2-3 минуты. Поэтому возникает мысль: а нельзя ли вообще исключить (или хотя бы ограничить) гликолиз при выполнении статической нагрузки. Ну совсем исключить его, конечно не удастся – при любой интенсивной нагрузке длительностью более 10-20 секунд он неизбежен, как крах империализма – а вот привести его привлечение к предельно возможному минимуму принципиальная возможность имеется. Дело в том, что гликолиз включается в работу после креатинфосфатного и до окислительного механизма ресинтеза АТФ. Если с одной стороны увеличить ёмкость креатинфосфатной реакции и замедлить падение её мощности, а с другой – существенно сократить время выхода аэробного механизма на максимальную мощность и одновременно повысить саму величину максимальной мощности, то продолжительность отрезка времени, в течение которого гликолиз будет играть ведущую роль, может значительно сократиться. Нужно построить тренировку так, чтобы зажать гликолиз в своеобразные клещи, образно говоря, нужно создать тиски для гликолиза. С одной стороны мощно и более длительно работает креатинфосфат, а с другой - быстро разворачивается окислительный механизм. В этом случае целью тренировочного процесса будет уже не накопление большого количества лактата в каждом выполняемом упражнении, а наоборот, упражнения будут направлены на то, чтобы свести участие гликолиза к минимуму, т.е. тренировки будут носить антигликолитический характер. Легко сказать, а вот как это реализовать на практике? Для начала перечислим то, что нужно учесть при построении антигликолитической тренировки по увеличению статической выносливости мышц-сгибателей пальцев. · Нужно добиться увеличения времени работы с максимальной мощностью для креатинфосфатного механизма энергообеспечения. · Нужно создать условия для того, чтобы гликолиз не запускался ещё до начала выполнения упражнения (гликолиз мажет активироваться адреналином, выделяющимся в кровь из-за предстартового " мандража") а также снизить восприимчивость к вредному воздействию молочной кислоты, выделяющейся в ходе протекания гликолиза в ходе выполнения упражнения. · Нужно увеличить аэробную мощность, уровень развития которой зависит от: 1. Запасов в организме доступных источников энергии (энергетических субстратов) для аэробного окисления; 2. Доставки кислорода в работающие мышцы; 3. Степени развития в работающих мышцах митохондриального окисления [11]. · Нужно сократить время развёртывания аэробного механизма ресинтеза АТФ Рассмотрим перечисленные требования более подробно.
6.1.1 Увеличение ёмкости креатинфосфатного механизма. Время поддержания максимальной мощности ресинтеза АТФ за счёт креатинфосфатной реакции составляет всего 8-10 секунд. Через 30 секунд она падает вдвое, а к концу 3 минуты интенсивной работы креатинкиназная реакция в мышцах практически прекращается [11]. Увеличение запасов креатинфосфата позволит поднять продолжительность максимальной энергопродукции за счёт данного механизма хотя бы на несколько секунд. Кому-то это может показаться ерундой, мелочью, ради которой не стоит напрягаться. Ну что же, попробуйте объяснить это спортсмену, которому до нормы мастера не хватило одного очка, потому что он раньше времени сорвался с перекладины.
|