Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интерпретация симплекс-таблиц – анализ модели на чувствительность⇐ ПредыдущаяСтр 63 из 63
Анализ моделей на чувствительность – это процесс, реализуемый после того, как оптимальное решение задачи получено. Исследователя вряд ли устроила бы заключительная симплекс-таблица, из которой можно было бы получить только список переменных и их значения. На самом же деле результирующая симплекс-таблица «насыщена» весьма важными данными, лишь небольшую часть которых составляют оптимальные значения переменных. Из симплекс-таблицы либо непосредственно, либо при помощи простых дополнительных вычислений можно получить информацию относительно 1) оптимального решения, 2) статуса ресурсов, 3) ценности каждого ресурса, 4) чувствительности оптимального решения к изменению запасов ресурсов, вариациям коэффициентов целевой функции и интенсивности потребления ресурсов. Сведения, относящиеся к первым трем пунктам, можно получить непосредственно из симплекс-таблицы для оптимального решения. Получение информации, относящиеся к четвертому пункту, требует дополнительных вычислений. Для иллюстрации возможностей получения указанной выше информации из заключительной симплекс-таблицы воспользуемся опять задачей 1. Эта задача формулируется следующим образом: max (прибыль) Оптимальная симплекс-таблица имеет вид:
1) Оптимальное решение
2) Статус ресурсов Прямая, проходящая через оптимальную точку, представляет связывающее ограничение (на рисунке 1.1 ограничения 1 и 2). В противном случае соответствующее ограничение будет несвязывающим (на рисунке 1.1 ограничения 3 и 4). Связывающее ограничение относится к разряду дефицитного ресурса, несвязывающее – недефицитный ресурс.
3) Ценность ресурса
Полученные результаты свидетельствуют о том, что дополнительные вложения в первую очередь следует направить на увеличение исходного продукта В и лишь затем – на увеличение исходного продукта А. Что касается недефицитных ресурсов, то, как и следовало ожидать, их объем увеличивать не следует. 4) Максимальное изменение запаса ресурса
Как изменится симплекс-таблица при изменении величины запаса ресурса на ? Проще всего получить ответ на этот вопрос, если ввести в правую часть первого ограничения начальной симплекс-таблицы и затем выполнить все преобразования. Прежде всего заметим, что на каждой итерации новая правая часть каждого ограничения представляет собой сумму двух величин: постоянной и члена, линейно зависящего от . Постоянные соответствуют числам, которые были на соответствующих итерациях в правых частях ограничений симплекс-таблиц до введения . Коэффициенты при во вторых слагаемых равны коэффициентам при на той же итерации. Другими словами, при анализе влияния изменений в правых частях второго, третьего и четвертого ограничений нужно пользоваться коэффициентами при переменных , , соответственно. Величина должна быть ограничена таким интервалом значений, при которых выполняется условие неотрицательности правых частей ограничений, т.е. ; 4 изменение запаса ресурса продукта А 7
5) Максимальное изменение коэффициентов целевой функции
Наряду с определением допустимых измнений запасовресурсов представляет интерес и утановление интервала допустимых изменений коэффициентов удельной прибыли (или стоимости). Цель заключается в том, чтобы найти интервалы значений изменений коэффициентов целевой функции, при которых оптимальные значения переменных остаются неизменными. Допустим, что удельная прибыль от производственной деятельности, ассоциированной с переменной изменяется от 3 до 3+ , где может быть как положительным, так и отрицательным числом. Целевая функция в этом случае приметвид: . Повторим все итерации симплекс-таблицы. Оптимальные значения переменных будут оставаться неизменными при значениях , удовлетворяющих условию неотрицательности (при максимизации) всех коэффициентов при небазисных переменных в результирующей строке. Таким образом, должны выполняться следующие неравенства: ; 1 изменение единицы стоимости продукта А 4 Таким образом, при изменении коэффициента целевой функции при в пределах 1 4 оптимальные значения и остаются неизменными, однако оптимальное значение целевой функции будет изменяться в соответствии с выражением , где .
Заключение Из теоретических положений, лежащих в основе построения симплекс-метода, следует, что угловая точка полностью определяется базисным решением ЗЛП, записанной в стандартной форме. Условия оптимальности и допустимости симплекс-алгоритма обеспечивают переход от начальной допустимой угловой точки к смежной угловой точке, соответствую- щей улучшенному значению целевой функции. Максимальное количество итераций, необходимых для получения оптимума, не превосходит , где – число переменных, а – число уравнений ЗЛП, представленной в стандартной форме. Неограниченность целевой функции или пространства решений, а также отсутствие допустимых решений свидетельствуют о неточностях, допущенных при построении исходной модели, и, следовательно, о необходимости её проверки. Симплекс-таблица для оптимального решения полезна не только тем, что в ней представлены оптимальные значения переменных. Она содержит также данные, характеризующие статус и ценность различных ресурсов. Анализ модели на чувствительность выявляет определённый интервал значений изменения запасов ресурсов, при которых виды производственной деятельности, представленные в полученном ранее оптимальном решении, остаются неизменными. При анализе модели на чувствительность может быть определён также и некоторый интервал значений изменения коэффициентов удельной прибыли (затрат), при которых сохраняются полученные ранее оптимальные значения переменных.
Использованная литература:
Гмурман В.Е., Теория вероятностей и математическая статистика: учебное пособие для студентов вузов. –М.: Высшая школа, 2002. -479 с. Гмурман В.Е., Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие для студентов вузов. –М.: Высшая школа, 2002. -404 с. Белинский В.А. и др., Высшая математика с основами математической статистики. –М.: Высшая школа, 1965. -516 с. Маркович Э.С., Курс высшей математики с элементами теории вероятностей и математической статистики. –М.: Высшая школа, 1972. -480 с. Данко П.Е., Попов А.Г., Высшая математика в упражнениях и задачах: учебное пособие для студентов втузов, ч. 2. –М.: Высшая школа, 1974. -416 с. Вентцель Е.С., Овчаров Л.А., Теория вероятностей: учебное пособие для студентов втузов. –М: Наука, 1973. -366 с.
|