Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Искусственная газовая атмосфера






Нормальная жизнедеятельность и работоспособность человека в условиях космического полета обеспечиваются благодаря использованию герметических кабин регенерационного типа, в которых до полета или во время полета устанавливается, а затем на протяжении всего полета поддерживается искусственная газовая атмосфера (ИГА). ИГА защищает в полете живые организмы от неблагоприятного влияния космического пространства, и в первую очередь от крайне опасного действия низкого барометрического давления. Одновременно ИГА является источником кислорода, необходимого для дыхания.

Использование ИГА в кабинах космических кораблей ставит перед специалистами – биологами, физиологами, врачами и инженерами – вопрос о том, какой она должна быть, т. е. каким физиолого-гигиеническим и техническим требованиям должна прежде всего удовлетворять? Речь идет о рациональном выборе основных параметров ИГА, таких, как величина общего барометрического давления, ее химический состав: выбор газов-разбавителей, допустимый диапазон колебаний в ней парциального давления кислорода (р О2), углекислого газа (р СО2), температуры и других параметров.

Решение этих вопросов и, следовательно, всей проблемы рационального формирования ИГА возможно только при условии учета сложного взаимодействия многих физиологических и технических факторов. В итоге создание рациональной ИГА, по существу, является определенным компромиссом между медико-биологическим и техническим подходом к этой проблеме. Первый определяет стремление к созданию гигиенических условий, близких к комфортным; второй ограничивает это стремление и требует считаться с трудностями конструктивного порядка: с необходимостью ограничивать вес и габариты аппаратуры, опасностью возникновения взрыва и пожара, а также вероятностью возникновения различных аварийных ситуаций. Последнее обстоятельство приводит к необходимости при формировании ИГА оценивать ее и в случаях нарушения герметичности кабины. Важно также при создании ИГА учитывать и то, что в зависимости от задач полета космонавты могут покидать космический корабль – осуществлять операции вне корабля или на поверхности небесных тел, вокруг которых практически отсутствует атмосфера (Луна), или где она крайне разрежена (Марс), или же, наоборот, имеет весьма высокую плотность (Венера). В таких случаях при создании ИГА следует, по-видимому, принимать во внимание конструктивные особенности (в первую очередь величину давления) скафандра, а также герметических отсеков транспортных средств и жилищ, которыми будут пользоваться космонавты (В. Б. Малкин, 1975).

Несмотря на то что отечественные и американские исследователи при создании искусственной газовой атмосферы (ИГА) в космических кораблях руководствовались в значительной степени общими принципами, практически вопрос о формировании ИГА был решен далеко не однозначно.

Отечественные исследователи избрали ИГА, близкую по основным параметрам (давлению и газовому составу) к нормальной земной атмосфере, и тем самым создали для космонавтов при нормальных режимах полета достаточно хорошие условия обитания.

Американские исследователи из-за ряда технических выгод использовали также приемлемую для космонавтов моногазовую ИГА, состоящую из кислорода, под общим давлением 258 мм рт. ст. При этом они, по-видимому, учитывали и удобство использования ее в случаях выхода космонавтов из кабины в скафандрах с низким общим давлением.

Эти ИГА, успешно использованные в полетах, в общем отвечают основным физиологическим принципам формирования ИГА. Они обеспечивают экипажу в полете условия нормального газообмена, не вызывают сколько-нибудь значительного напряжения приспособительных механизмов и поэтому не снижают адаптационного резерва организма.

Как американские, так и российские специалисты продолжают исследовательскую работу по созданию ИГА для космических кораблей. Это свидетельствует о том, что используемые в настоящее время ИГА в свете перспективы полетов большой продолжительности, по-видимому, вряд ли являются оптимальными. В процессе разработки этой проблемы обсуждаются различные варианты ИГА.

Классификация ИГА. Последовательное рассмотрение и оценку различных вариантов ИГА целесообразно провести в соответствии с классификацией ИГА. В ее основу могут быть положены химический состав, физические свойства и основные физиологические характеристики ИГА.

1. С точки зрения физиологической оценки ИГА по условиям газообмена и по величине р О2 и р СО2 во внутренней среде (кровь, альвеолярный воздух) могут быть эквивалентными нормальной земной атмосфере и не полностью эквивалентными, содержащими некоторый избыток О2 и СО2 или дефицит О2.

2. По химическому составу ИГА может состоять только из одного газа (О2), двух газов – О2 и какого-либо биологически индифферентного газа, или, наконец, в ее состав, помимо О2, могут входить несколько индифферентных газов (Н2, Не, Ne, Аг).

3. Физические свойства ИГА, помимо того, что они зависят от ее химического состава, зависят еще и от величины барометрического давления, которое также может широко варьировать.

Из сказанного становится очевидным, что число принципиально возможных для практического использования в космических полетах вариантов ИГА достаточно велико. Однако целесообразно ограничить их рассмотрение лишь теми, которые в настоящее время привлекают наибольшее внимание исследователей и были в связи с этим экспериментально изучены в лабораторных опытах, а некоторые из них были уже использованы в полетах (В. Б. Малкин, 1975).

Анализ ИГА различного газового состава. Сначала рассмотрим ИГА, имитирующие нормальную газовую атмосферу Земли. К ним относятся ИГА, которые в основном состоят тоже из двух газов: О2 и N2; содержание других газов в них невелико – порядка 1 %. Следует сразу же заметить, что когда речь идет об имитации нормальной атмосферы Земли в кабинах космических кораблей, то при этом подразумевается создание комфортных условий, установленных гигиенистами для жилых помещений в географических районах, расположенных на уровне моря. Речь идет о воспроизведении хорошо изученных искусственных условий, которые условно мы обозначим термином «нормальная земная атмосфера» (НЗА).

Как считают многие специалисты, использование в кабинах наших космических кораблей ИГА, близкой к НЗА, было вполне оправданно, прежде всего в связи с тем, что такая ИГА с биологической точки зрения является наиболее адекватной для человека, исторически адаптировавшегося к ней. В принципе ИГА, близкая к НЗА, может быть использована в длительных космических полетах как один из наиболее надежных вариантов ИГА.

Некоторые исследователи полагают, что, несмотря на приемлемость использования НЗА в качестве ИГА в кабинах космических кораблей, все же в большинстве случаев применение ее нерационально. По этому поводу О. Г. Газенко и А. М. Генин пишут: «…копирование земной атмосферы неоправданно ограничивает возможность вариаций ИГА, которые могут оказаться целесообразными с точки зрения техники и защиты человека в аварийной обстановке».

В связи с необходимостью при выборе ИГА считаться с весовыми параметрами (чем выше давление ИГА, тем соответственно толще должны быть стенки кабины и больше ее вес), вероятностью возникновения аварийных ситуаций многие исследователи указывают на теневые стороны использования НЗА. Они отмечают, что в случае нарушения герметичности кабины величина перепада барометрического давления будет значительной, что может привести к серьезному повреждающему действию при взрывной декомпрессии. Переход из НЗА в ИГА с низким давлением, например при переходе из одного корабля в другой или при пользовании скафандрами с низким давлением, чреват серьезной опасностью возникновения высотной декомпрессионной болезни. В случаях использования скафандров с низким давлением это может осложнить не только пребывание космонавтов в аварийной ситуации, но и оказать неблагоприятное влияние на выход их в открытый космос и на поверхность небесных тел, практически лишенных или имеющих крайне разреженную атмосферу. Здесь же следует отметить, что некоторые исследователи указывают на целесообразность использования НЗА в кабинах лишь в ограниченных случаях не только в связи с вероятностью возникновения аварийных ситуаций. Эту точку зрения они аргументируют тем, что сами условия полета большой продолжительности могут приводить к таким функциональным сдвигам в организме (к астенизации – развитию детренированности), при которых комфортные, достаточно стабильные параметры НЗА окажутся уже далеко не оптимальными.

• В связи с вышесказанным исследователи отмечают, что в ряде случаев в кабинах космических кораблей целесообразно использовать двухкомпонентные ИГА, эквивалентные НЗА, но с более низким барометрическим давлением.

Максимально допустимое снижение давления ИГА лимитируется величиной порядка 190 мм рт. ст. При этом для сохранения нормального обеспечения организма О2 в случаях использования столь низких величин давления газовый состав ИГА должен практически состоять только из одного О2, т. е. газовая среда уже не может быть двухкомпонентной. В связи с этим при рассмотрении ИГА, состоящую из О2 и N2, остановимся лишь на четырех диапазонах пониженного давления: 526, 405, 308 и 267 мм рт. ст., соответствующих высотам: 3000, 5000, 7000 и 8000 м.

В работе Д. И. Иванова и др. были последовательно апробированы в условиях лабораторного эксперимента три перечисленные выше ИГА с общим давлением 525, 405 и 308 мм рт. ст. Исследования при меньших величинах давления этими авторами не проводились по двум соображениям: необходимости профилактики высотной деком-прессионной болезни (ВДВ), возникновение которой, уже начиная с высот 7500–8000 м, становится реальностью, а также вследствие увеличения возможности пожара в связи с повышенным содержанием О2 в ИГА.

Результаты этой работы показали, что месячное пребывание испытуемых в условиях ИГА, эквивалентных по О2 НЗА, при давлениях, соответствующих высотам 3000–7000 м, не оказывает какого-либо неблагоприятного влияния на организм. Об этом можно было прежде всего судить по тому, что все три апробированных варианта ИГА с физиологической точки зрения оказались равноценными. Отмеченные у испытуемых в этом исследовании изменения некоторых физиологических параметров: снижение потребления О2 на 10–15 %, повышение частоты сердечных сокращений, особенно отчетливое при проведении ортостатической пробы, изменение суточной периодики частотного спектра ЭЭГ, увеличение числа медленных волн в дневное время – не зависели от газового состава и давления ИГА, а были обусловлены влиянием гиподинамии и изменениями режима труда, отдыха и сна.

В дальнейшем эти исследования были продолжены А. Г. Кузнецовым и др., которые провели исследования с 2-месячным пребыванием испытуемых в ИГА с общим давлением газов 308 мм рт. ст. При этом у испытуемых также были обнаружены функциональные сдвиги, обусловленные в основном только влиянием гиподинамии. Значительное внимание, которое уделяют исследователи созданию ИГА с общим давлением газов порядка 300 мм рт. ст. и менее, не случайно. Некоторые авторы указывают, что давление 300 мм рт. ст. является оптимальным, так как, будучи еще достаточно высоким, практически надежно предохраняет от возникновения декомпрессионных явлений и поэтому не требует проведения десатурации организма от N2 при вхождении в ИГА. Оно также удобно и в случаях необходимости использования скафандров с низким давлением, так как практически исключает вероятность возникновения ВДВ, которая может возникнуть только в крайне редких случаях при аварийной разгерметизации в первые часы полета. Кроме того, с технической точки зрения использование двухкомпонентной ИГА с давлением 300 мм рт. ст. выгодно, поскольку позволяет снизить вес кабины.

• Большинство исследователей полагают, что человек и животные могут нормально жить в ИГА, лишенных N2. Эта точка зрения аргументирована многочисленными экспериментальными данными, свидетельствующими о нормальном развитии беспозвоночных и позвоночных животных в условиях ИГА, в которой азот полностью отсутствует. Виологическая роль N2 для человека сводится к тому, что он заполняет полости тела, и в первую очередь легкие, и тем самым поддерживает их определенный объем, препятствуя развитию ателектазов.

Эту функцию азота могут, по-видимому, выполнять и другие индифферентные газы, в том числе и гелий – Не.

1. ИГА с Не. Для утверждения возможности использования Не в качестве одного из основных компонентов ИГА необходимы доказательства того, что сам по себе этот газ не оказывает какого-либо неблагоприятного влияния на организм.

Результаты исследований, проведенных на животных, а также с участием человека, в которых азот в условиях нормального и пониженного давления был в ИГА замещен гелием, дают основания считать, что последний не оказывает токсического влияния на организм и так же, как и N2, является биологически индифферентным газом. Следует лишь упомянуть, что некоторые функциональные сдвиги – увеличение потребления кислорода, снижение количества эритроцитов и гемоглобина и связанное с этим повышение суточного потребления железа, – которые были обнаружены в гелиокислородной среде у кроликов Гамильтоном и др., как и изменения устойчивости животных к гипоксии, отмеченные А. Г. Диановым, обусловлены, вероятно, теплофизическими свойствами Не (В. Б. Малкин, 1975).

После того как принципиальная возможность использования Не вместо N2 в ИГА доказана, следует ответить на второй вопрос: насколько целесообразна такая замена?

Авторы, которые указывают на целесообразность использования Не вместо N2 в ИГА, аргументируют свою точку зрения следующими соображениями. Так, согласно данным М. И. Якобсона, А. Г. Дианова и А. Г. Кузнецова, при использовании Не несколько уменьшается вероятность возникновения ВДВ и особенно ее тяжелых форм, которые могут иметь место у космонавтов после перехода их в условия низкого барометрического давления. Это мнение основано, по-видимому, на том, что бунзеновский коэффициент растворимости в жире N2 примерно в 4 раза выше, чем Не. В работах американских исследователей Берда и др. было, наоборот, установлено несколько более частое проявление «bends» – мышечно-суставной формы ВДВ у людей, находившихся в ИГА, в которой использовался Не. Вопрос же о частоте проявления тяжелых форм ВДВ при использовании ИГА, содержащей Не, остается открытым.

Малая растворимость гелия в тканях и высокий коэффициент его диффузии лежат в основе того, как указывают А. Г. Дианов и др., что при дыхании кислородом время практически полной десатурации организма от Не значительно меньше, чем от N2. Это уже существенное и бесспорное преимущество использования Не в ИГА. В случаях повышения температуры в кабине благодаря высокой теплопроводности Не космонавты гораздо лучше будут переносить это воздействие в ИГА, в которой N2 заменен Не.

В такой среде должна также повыситься устойчивость к гиперкапнии, интенсивным физическим нагрузкам и другим воздействиям, приводящим к значительному росту вентиляции. Этот эффект обусловлен тем, что при форсированном дыхании гелиокислородной смесью сопротивление воздухоносных путей в связи с низкой плотностью Не сказывается меньше, чем при дыхании воздухом. При нормальном, спокойном дыхании этот эффект практически не проявляется, так как сопротивление воздухоносных путей определяется уже не плотностью, а в основном вязкостью вдыхаемого газа. Вязкость Не существенно не отличается от N2.

Одним из доводов, обосновывающих целесообразность замены азота в ИГА гелием, является высокая устойчивость атома Не к действию различных видов радиации. Это выгодно отличает Не от N2. Относительно большой вес N2 определяет его слабые защитные свойства по отношению к космическому излучению как с точки зрения поглощения первичных нуклонов, так и в отношении образования вторичных частиц. Согласно данным М. Г. Дмитриева, под действием ионизирующего излучения в воздухе образуются «возбужденные» атомы и ионы азота. Они вступают в химические реакции с О2, в результате чего образуются такие токсические соединения, как окись, закись и двуокись азота. Помимо перечисленных соображений, целесообразность замены азота в ИГА гелием обусловлена и с технической точки зрения. Плотность Не приблизительно в 7 раз меньше плотности N2, в связи с чем использование гелиокислородной атмосферы в космических кораблях приводит к снижению стартового веса, а также веса запасов газа, необходимых для восполнения атмосферы корабля. Данное преимущество гелиокислородной ИГА не всегда может в полной мере проявляться в связи с высокой текучестью Не. Это является причиной сокращения резервного времени при утечке газов из кабины в случаях замены азота в ИГА гелием, что, несомненно, следует считать отрицательной стороной такой замены. К сказанному следует добавить, что замена азота в ИГА гелием должна также привести к снижению энергии, необходимой для вентиляции кабины. Несмотря на определенные выгоды использования Не в ИГА, экспериментальных исследований с участием человека, в которых бы изучался этот вопрос, сравнительно немного. В работах отечественных исследователей была экспериментально изучена ИГА, состоящая из О2 и Не при нормальном барометрическом давлении (1 атм).

Результаты работ этих авторов показали, что пребывание в гелиокислородной среде не вызывает у испытуемых сколько-нибудь существенных изменений самочувствия, поведения и работоспособности. Однако замена азота в ИГА гелием все же сопровождалась некоторыми функциональными сдвигами. Наиболее важными из них были изменения теплообмена, речи и дыхания. Так, пребывание в гелиокислородной ИГА при температурах, являющихся комфортными в условиях обычной воздушной атмосферы (18–24 °C), сопровождалось заметным охлаждением испытуемых. Например, при температуре 21 °C у испытуемых быстро появлялись неприятные теплоощущения. При этом средневзвешенная температура кожи за 2 ч снижалась почти на 2 °C. В гелиокислородной ИГА зона теплового комфорта оказалась заметно сдвинутой в сторону более высоких температур и находилась в дневное время в пределах 24, 5-27, 5 °C, а ночью в пределах 26–29 °C. При оценке этих данных обращает на себя внимание значительное сужение (на 3 °C) зоны теплового комфорта в гелиокислородной среде по сравнению с аналогичной зоной в воздухе. Как уже отмечалось, этот эффект гелиокислородной атмосферы связан с высокой теплопроводностью Не.

Замена азота воздуха гелием привела и к изменению речи испытуемых: в гелиокислородной ИГА спектр речи сдвигался в сторону высоких частот на величину порядка 0, 7 октавы. Разборчивость речи при этом несколько ухудшалась, но еще сохранялась на уровне допустимых величин (90–95 %). Сразу после перехода на дыхание обычным воздухом речевая функция восстанавливалась. Согласно расчетным данным, скорость распространения звука в гелиокислородной среде при давлении в 1 атм и температуре 27 °C в 1, 85 раза выше, чем в воздухе. Это и является причиной искажения речи после замены азота воздуха гелием.

Функциональные изменения дыхания в гелиокислородной среде проявлялись в увеличении максимально возможной вентиляции легких, что было обусловлено снижением сопротивления воздухоносных путей. Таким образом, результаты исследований, в которых азот воздуха замещался гелием, показали практическую возможность использования такой ИГА (В. Б.Малкин, 1975).

Американские исследователи провели изучение гелиокислородной ИГА с общим давлением 380 мм рт. ст., 360 мм рт. ст. и 258 мм рт. ст.

Анализ результатов этих работ позволяет считать, что длительное (до 56 дней) пребывание в гелиокислородной среде не оказывает неблагоприятного влияния на обмен веществ, дыхание, кровообращение и центральную нервную систему. Отмеченные в этих исследованиях некоторые патологические сдвиги были обусловлены влиянием различных факторов, не связанных непосредственно с заменой азота в ИГА гелием. Так, например, в опытах, проведенных Цефтом и сотрудниками, возникновение раздражения слизистой оболочки век – развитие конъюнктивита – было обусловлено низкой влажностью ИГА (давление 380 мм рт. ст.); при повышении влажности эти нарушения исчезали. Снижение ортостатической устойчивости у одного из испытуемых, как и в большинстве исследований в имитаторах кабин, было обусловлено, по-видимому, развитием гиподинамии.

Сухость слизистых оболочек, развитие конъюнктивита, отмеченные у испытуемых при 56-суточном пребывании в гелиокислородной ИГА с общим давлением 258 мм рт. ст. (р О2 – 175; p He – 74; с N2 – 2), также были связаны с низкой влажностью. Жалобы испытуемых на боли в животе и повышенный метеоризм нельзя связывать с наличием Не в ИГА. Они были обусловлены, очевидно, другими причинами, возможно неудачным рационом питания. С наличием Не в ИГА были связаны в этих исследованиях лишь незначительные искажения речи и изменения температуры кожи при выполнении физических упражнений. Однако эти изменения существенного значения не имеют, так как искажения речи могут быть устранены с помощью соответствующих технических средств, равно как и все неприятные теплоощущения в гелиокислородных средах легко устранимы путем повышения температуры ИГА.

При сравнительной оценке гелиокислородных ИГА с низким давлением следует принимать во внимание, что при медленной утечке газов из кабины резервное время (то время, в течение которого давление снизится до критической величины, определяющей развитие острой гипоксии) у членов экипажа будет тем меньше сравнительно с ИГА, содержащими N2, чем выше процент содержания Не в ИГА. Следовательно, при наиболее низком общем давлении (258 мм рт. ст.) это различие между гелио– и азотно-кислородными ИГА будет уже относительно небольшим.

В заключение следует сказать, что если при подводных погружениях в ряде случаев целесообразность использования Не в ИГА доказана, то для ИГА кабин космических летательных аппаратов этот вопрос еще находится в стадии изучения (В. Б. Малкин, 1975).

2. Моногазовая (кислородная) ИГА. Вопрос о целесообразности использования чистого кислорода в кабинах высотных летательных аппаратов обсуждался еще до начала Второй мировой войны В. А. Спасским. Он полагал, что в гермокабинах высотных самолетов, возможно, будет целесообразно использовать О2 при давлении порядка 230 мм рт. ст. Спасский считал, что до более низких величин давление не стоит снижать, так как при этом, с одной стороны, значительно возрастает вероятность возникновения ВДВ и высотного метеоризма, с другой – практически будет отсутствовать даже небольшой резерв О2 в случаях повышенной утечки газа из кабины.

Возможность длительного пребывания животных в моногазовой ИГА, эквивалентной по газообмену НЗА и составленной практически из одного только кислорода (p N2 < 10 мм рт. ст.) с давлением 190–200 мм рт. ст., была доказана работами американских и российских ученых.

В этих работах было установлено, что в условиях моногазовой среды, эквивалентной по О2 НЗА, у некоторых подопытных животных может развиваться ателектаз легких. Согласно данным В. Макхаттла и С. Рана, возникновение у мышей ателектаза легких в первые 48 ч пребывания в моногазовой атмосфере явилось причиной гибели некоторых из них, хотя большинство животных без видимых нарушений поведения и каких-либо повреждений пробыли весь срок эксперимента – 59 дней. В дальнейшем в опытах на крысах Н. А. Агаджанян и др., А. М. Генин, С. Г. Жаров и др. также наблюдали в первые дни пребывания в такой ИГА у некоторых животных развитие ателектазов, которые вскоре исчезали, после чего животные продолжительное время – до 100 суток – сохраняли нормальное физиологическое состояние. Этими авторами было отмечено у животных развитие лишь умеренной дегидратации, которая была обусловлена повышенным испарением жидкости в условиях пониженного (до 200 мм рт. ст.) давления в ИГА.

В работах Е. П. Хиатта и др., проведенных на молодых растущих крысах, не было выявлено развития ателектазов и какого-либо другого неблагоприятного влияния моногазовой ИГА (р О2 – 196 мм рт. ст.). Пребывание в ней в течение 24 дней вызывало у подопытных животных лишь некоторое снижение выделения мочи. Авторы связали этот эффект с повышенной потерей жидкости, обусловленной ростом ее испарения в условиях разреженной атмосферы.

Наиболее обстоятельное изучение возможности длительного пребывания животных в условиях моногазовой среды проведено в США А. Пепелько, который для суждения о влиянии моногазовой среды использовал биологический критерий: способность к репродукции. Эксперимент продолжался 11 месяцев. Если учесть, что срок жизни крыс ограничен примерно 2, 5 годами, то следует признать длительность этого эксперимента весьма большой. Согласно данным этого автора, моногазовая среда не оказывает какого-либо неблагоприятного влияния на физиологическое состояние и биологию белой крысы. В такой среде у животных нормально протекает беременность и нормально растет и развивается потомство. Единственный загадочный результат этой работы – гибель некоторых рожденных в условиях моногазовой ИГА животных после перевода их через 21 день после рождения в условия НЗА. Можно предположить, что смерть животных в условиях НЗА была обусловлена какими-то побочными факторами, не связанными непосредственно с моногазовой ИГА, в которой они ранее находились.

Оценивая результаты экспериментов на животных, можно сделать заключение о том, что моногазовая среда является биологически приемлемой, хотя пребывание в ней и связано с определенным риском развития ВДВ и ателектаза легких.

Исследования влияния на организм человека ИГА, состоящей в основном из О2 с общим давлением порядка 190–200 мм рт. ст., проведенные в США С. Велчем и сотрудниками, Д. Морганом и сотрудниками, а в нашей стране А. М. Гениным и С. Г. Жаровым, позволили установить, с одной стороны, возможность в случаях необходимости использования такой ИГА, с другой – были отмечены определенные неблагоприятные эффекты, которые могут возникнуть в таких условиях обитания. Так, в работе Велча и сотрудников у одного из испытуемых в среде р О2 – 176 мм рт. ст. возникли загрудинные боли, которые, возможно, были связаны с развитием ателектазов легких. Воли исчезали при повышении давления ИГА. У некоторых развивался ушной ателектаз, и у всех были отмечены признаки дегидратации.

В исследованиях Д. Моргана и сотрудников у шести испытуемых обнаружены хрипы в легких, у одного – боль в суставе и у двух – небольшое снижение (до 90 %) насыщения артериальной крови кислородом.

В исследованиях, проведенных А. М. Гениным и др., длительное (30-суточное) пребывание в моногазовой атмосфере (содержание N2 в ИГА от 5 до 10 %) испытуемые перенесли хорошо, сохранив на высоком уровне физическую и интеллектуальную работоспособность. У них не было обнаружено ателектазов ни в легких, ни в полости среднего уха. Это, возможно, было обусловлено тем, что испытуемые при исследованиях периодически выполняли физические упражнения. 0пределенное значение могло иметь и то обстоятельство, что содержание N2 в ИГА было несколько выше, чем в опытах С. Велча и Д. Моргана. Авторы указали на некоторые отрицательные стороны испытанной ими ИГА. Прежде всего они отметили необходимость длительной десатурации организма от N2перед началом эксперимента. Почти во всех случаях, когда время десатурации было меньше 3 ч, переход испытуемых в моногазовую ИГА приводил к появлению у них симптомов.

Исследования с участием людей показали, что при соблюдении определенных условий (предварительной десатурации, профилактики ателектазов легких посредством физических упражнений) моногазовая ИГА с общим давлением 200 мм рт. ст. может быть, по-видимому, использована и в полетах (В. Б. Малкин, 1975).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал