Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Индекс структурных сдвигов
Выше изложенные общие индексы применимы к изучению явлений, образованных как разными, так и однородными процессами. В последнем случае динамику итога можно показать через простые общие индексы отдельных факторов. Для доказательства в формуле количественного индекса Ласпейреса числитель умножим и разделим на , а знаменатель – на . Тогда будем иметь = = = , где = - простой общий индекс количества товаров; = – доля или удельный вес конкретного товара в общем количестве; = - агрегатный общий индекс структуры, доли или удельного веса, часто называемый индексом структурных сдвигов. Следовательно, количественный индекс Ласпейреса равняется произведению простого общего индекса количества товаров и индекса структурных сдвигов. То есть = , (1.85) откуда для определения индекса структурных сдвигов получается довольно простая формула = / . (1.86) Используя формулу (1.83) в двухфакторной модели общего индекса выручки, получим его трехфакторную мультипликативную модель вида IQ = = . (1.87) Трехфакторная модель возможна к широкому применению в экономическом анализе для установления количественного влияния каждого фактора на вариацию сложного явления.
|