Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Международная символика классов симметрии (Германа-Могена).






 

В заключение следует отметить, что в России для описания симметрии

кристаллических многогранников (конечных фигур) пользуются символикой

Бравэ. Симметрия кристаллических решеток, которые рассматриваются как

бесконечные фигуры, описывается с помощью пространственных групп Фе-

дорова, опирающихся на символику Германа – Могена

Вопросы

Простые формы кристаллов- совокупность кристаллографически одинаковых граней, совмещающихся друг с другом под действием операций симметрии данного класса. Т.е. простой идеальной формой кристалла называется многогранник, все грани которого можно получить из одной грани с помощью преобразований симметрии, свойственных точечной группе симметрии данного кристалла. Для всех граней простой формы идеального кристалла скорости роста одинаковы, все грани равны кристаллографически и по своим физическим и химическим свойствам.

Если совокупность плоскостей простой формы не замыкает пространство, то она называется открытой. Открытые формы характерны для кристаллов низших сингоний, и возможны во всех сингониях, кроме кубической. Если пространство замыкается, то образуется выпуклый многогранник, который представляет собой закрытую форму. Такой многогранник называется изоэдром, т. е. «равногранником». Любой сложный многогранник можно разбить на конечное количество простых форм, каждая из которых будет характеризоваться своими свойствами.

Из 47 простых форм 7 относятся к сингониям низшей категории, 27 средней категории и 15 высшей категории.

Вывод простых форм заключается в переборе форм общего и разных частных положений для каждой группы кристаллов. Названия простых форм происходят от греческих корней чисел (моно — один, ди — два и т.п.) и слов «эдр» — грань или «гон» — угол.

Семейство граней, взаимосвязанных всеми симметрическими операциями точечной группы

(класса) симметрии называют простой формой кристалла.

Грани, принадлежащие одной простой форме, равны не только внешне геометрически, но также по своим физическим и химическим свойствам

Если совокупность граней одной простой формы полностью замыкает заключенное между ними пространство, то она считается закрытой.

Если совокупность граней одной простой формы не замыкает заключенное между ними пространство, то она считается открытой.

Минимальное число граней для замыкания пространства – 4.

Открытые формы встречаются в кристаллах низшей и средней категорий, но не возможны в кристаллах кубической сингонии

 

Грань частного положения фиксирована какими-либоэлементами симметрии – либо перпендикулярнаединичному особому направлению, либо параллельна ему, либо равнонаклонна к эквивалентным особым направлениям; все остальные положения граней– общие, т. е. не зафиксированные относительно особых направлений в кристалле.

Отсюда простые формы, образованные гранями первого типа, называют частными, второго − общими. И поскольку в любом классе симметрии частные простые формы могут иметь несколько названий, а общая форма – только одна, то каждый класс симметрии по предложению Е. С. Федорова определяется названием присущей ему общей простой формы.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал