Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейная модель торговли⇐ ПредыдущаяСтр 22 из 22
Одним из примеров экономического процесса, приводящего к понятию собственного числа и собственного вектора матрицы, является процесс взаимных закупок товаров. Будем полагать, что бюджеты п стран, которые мы обозначим соответственно x 1, x 2, …, xn расходуются на покупку товаров. Мы будем рассматривать линейную модель обмена, или, как ее еще называют, модель международной торговли. Пусть aij — доля бюджета xj, которую j -я страна тратит на закупку товаров у i -й страны. Введем матрицу коэффициентов aij:
Тогда если весь бюджет расходуется только на закупки внутри страны и вне ее (можно это трактовать как торговый бюджет), то справедливо равенство
Матрица (16.12) со свойством (16.13), в силу которого сумма элементов ее любого столбца равна единице, называется структурной матрицей торговли. Для i -й страны общая выручка от внутренней и внешней торговли выражается формулой
Условие сбалансированной (бездефицитной) торговли формулируется естественным образом: для каждой страны ее бюджет должен быть не больше выручки от торговли, т.е. Pi ≥ xi:, или
Докажем, что в условиях (16.14) не может быть знака неравенства. Действительно, сложим все эти неравенства при i от 1 до n. Группируя слагаемые с величинами бюджетов xj, получаем
Нетрудно видеть, что в скобках стоят суммы элементов матрицы А по ее столбцам от первого до последнего, которые равны единице по условию (16.13). Стало быть, мы получили неравенство
откуда возможен только знак равенства. Таким образом, условия (16.14) принимают вид равенств:
Введем вектор бюджетов , каждая компонента которого характеризует бюджет соответствующей страны; тогда систему уравнений (16.15) можно записать в матричной форме
Это уравнение означает, что собственный вектор структурной матрицы А, отвечающий ее собственному значению λ = 1, состоит из бюджетов стран бездефицитной международной торговли. Перепишем уравнение (16.16) в виде, позволяющем определить :
Пример. Структурная матрица торговли четырех стран имеет вид:
Найти бюджеты этих стран, удовлетворяющие сбалансированной бездефицитной торговле при условии, что сумма бюджетов задана:
Решение. Необходимо найти собственный вектор , отвечающий собственному значению λ = 1 заданной структурной матрицы А, т.е. решить уравнение (16.17), которое в нашем случае имеет вид
Поскольку ранг этой системы равен трем, то одна из неизвестных является свободной переменной и остальные выражаются через нее. Решая систему методом Гаусса, находим компоненты собственного вектора :
Подставив найденные значения в заданную сумму бюджетов, найдем величину с: с = 1210, откуда окончательно получаем искомые величины бюджетов стран при бездефицитной торговле (в условных денежных единицах):
|