![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Контактная разность потенциалов. Контакт двух металлов. Законы Вольта.
Контактными называется ряд физических явлений, возникающих в области соприкосновения разнородных тел. Практический интерес контактные явления представляют в случае контакта металлов и полупроводников. Покажем возникновение контактной разности потенциалов, воспользовавшись представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода Авых1 и Авых2. Зонные энергетические диаграммы обоих металлов приведены на рис. 2. У этих металлов также различны уровни Ферми (уровень Ферми или энергия Ферми (EF) – энергия, ниже которой все энергетические состояния заполнены, а выше – пусты при абсолютном нуле температуры). Если Авых1 < Авых2 (рис. 2), то в металле 1 уровень Ферми располагается выше, чем в металле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно.
Одновременно происходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицательно, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится термодинамическое равновесие, которое, как доказывается в статистической физике, характеризуется выравниванием уровней Ферми в обоих металлах (рис. 3). Поскольку теперь для соприкасающихся металлов уровни Ферми совпадают, а работы выхода Авых1 и Авых2 не изменяются, то потенциальная энергия электронов в точках, лежащих вне металлов в непосредственной близости от их поверхности (точки А и В на рис. 3), будет различной. Следовательно, между точками А и B устанавливается разность потенциалов, которая, как следует из рисунка, равна Разность потенциалов, обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов - ∆ φ внеш или просто контактной разностью потенциалов. Разность уровней Ферми в контактирующих металлах приводит к возникновению внутренней контактной разности потенциалов, которая равна
Внутренняя контактная разность потенциалов ∆ φ внут зависит от температуры Т контакта металлов (поскольку положение самого EF зависит от Т), обусловливая многие термоэлектрические явления. Как правило ∆ φ внут < < ∆ φ внеш. При приведении в соприкосновение трёх разнородных проводников разность потенциалов между концами разомкнутой цепи после установления термодинамического равновесия окажется равной алгебраической сумме разностей потенциалов во всех контактах. Предположим, что концентрации свободных электронов в металлах неодинаковы - n1 ≠ n2. Тогда за одно и то же время через контакт из металла с большей концентрацией электронов перейдет больше, чем в обратном направлении (концентрационная диффузия). В области контакта дополнительно возникнет разность потенциалов ∆ φ внут. В области контакта концентрация электронов будет плавно изменяться от n1 до n2. Для расчета ∆ φ внут выделим в области контакта небольшой объем, имеющий форму цилиндра с образующими, перпендикулярными границе раздела металлов (рис. 4), и будем считать, что у первого металла концентрация электронов равна n1 = n, а у второго она больше, т.е. n2 = n+dn.
Далее будем рассматривать свободные электроны как некоторый
где Давление в основании цилиндра 2 соответственно будет:
Разность давлений вдоль цилиндра равна:
Под влиянием разности давлений возникнет поток электронов через границу раздела металлов из области большего давления р2 в направлении основания 1 (а на рис. 4). Равновесие наступит, когда сила dFэл возникшего электрического поля с напряженностью E (рис. 4) станет равной силе давления dp× dS электронного газа, т.е.
Если число электронов в объёме dV=dx× dS цилиндра равно dN=ndV, то сила электрического поля, действующая на них, будет определяться:
Напряжённость E электрического поля численно равна градиенту потенциала
![]()
Подставляя E в формулу (7) и далее в уравнение (6), с учётом формулы (5) получим:
Разделим переменные
Поскольку концентрации свободных электронов у металлов различаются незначительно, то величина ∆ φ внут существенно меньше разности потенциалов ∆ φ внеш. Величина ∆ φ внут достигает нескольких десятков милливольт, тогда как ∆ φ внеш может иметь порядок нескольких вольт. Полная разность потенциалов при контакте металлов с учетом формулы (10) определяется:
При указанном на рис. 3 направлении обхода ∆ φ 12 = -∆ φ 21. Тогда уравнение для всей цепи:
Если T1≠ T2, то и ∆ φ ≠ 0. Алгебраическая сумма всех скачков потенциалов в замкнутой цепи равна электродвижущей силе (ЭДС), действующей в цепи. Следовательно, при T1 ≠ T2 в цепи (рис. 5) возникает ЭДС, равная в соответствии с формулами (12) и (13):
Обозначим
Следовательно формула (15) примет вид
Таким образом, ЭДС в замкнутой цепи из однородных проводников зависит от разности температур контактов. Термо-ЭДС — электродвижущая сила ε, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, контакты между которыми имеют различные температуры (эффект Зеебека). Если вдоль проводника существует градиент температуры, то электроны на горячем конце приобретают более высокие энергии и скорости. В полупроводниках, кроме того, концентрация электронов растёт с температурой. В результате возникает поток электронов от горячего конца к холодному, на холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Алгебраическая сумма таких разностей потенциалов в цепи Контактная разность потенциалов может достигать нескольких вольт. Она зависит от строения проводника (его объемных электронных свойств) и от состояния его поверхности. Поэтому контактную разность потенциалов можно изменять обработкой поверхностей (покрытиями, адсорбцией и т. п.). Анализируя всё выше написанное, можно сделать выводы, известные как законы Вольта:
В самом деле, для цепи, показанной на рис. 6:
|