Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Использование свойств симметрии при раскрытии статической неопределенности
Пусть имеется симметричная в геометрическом смысле рама (рис. 7.6), т.е. левая часть является зеркальным отображением правой части относительно оси симметрии. При расчете таких систем решение канонических уравнений можно упростить.
Рис. 7.6 Рассмотрим два случая загружения рамы: симметричной (рис. 7.6, б) и кососимметричной (рис. 7.6, в) нагрузкой. Аналогично будем классифицировать и внутренние силовые факторы. Рассекая стержень в общем случае нагружения, будем иметь шесть составляющих внутренних усилий. Докажем следующее положение: у симметричной рамы при симметричной нагрузке обращаются в нуль, кососимметричные неизвестные, а при кососимметричной нагрузке — симметричные неизвестны.
Рис. 7.7 Рассмотрим раму, изображенную на рис. 7.6. Основная система при использовании свойств симметрии должна быть обязательно симметричной. Она будет общей как при симметричном, так и кососимметричном загружении. На рисунке 7.8 показаны основная и эквивалентные системы.
Рис. 7.8 Обозначая через
Заменим теперь, что в этих уравнениях многие из коэффициентов обращаются в нуль. Это будут все коэффициенты, у которых один индекс принадлежит симметричному, а другой — кососимметричному фактору. Например, обращается в нуль коэффициент Вычеркивая из системы уравнений коэффициенты, обращающиеся в нуль, получим:
Как видим, система уравнений распалась на две независимые. Теперь положим, что внешняя нагрузка является симметричной. Из сказанных выше соображений следует, что При кососимметричной нагрузке Таким образом, при симметричной нагрузке кососимметричные неизвестные равны нулю, а при кососимметричной нагрузке —симметричные раны нулю. Если внешняя нагрузка не обладает свойствами симметрии, то ее всегда можно разложить на симметричную и кососимметричную, как показано на рис. 7.9.
Рис. 7.9 При этом задача распадается на две, которые решаются отдельно. Окончательные эпюры получаются сложением эпюр от симметричной и кососимметричной нагрузки.
|