Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Политропный процесс






Любой процесс идеального газа, в котором теплоёмкость является постоянной величиной, условились называть политропным процессом. Из этого следует, что основные термодинамические процессы (изохорный, изобарный, изотермический и адиабатный), если они протекают при постоянной теплоёмкости, являются частными случаями политропного процесса.

Уравнение процесса:

pv = const, (7.25)

где n = – показатель политропы, который для разных процессов может иметь

любое значение от + до – , но остаётся постоянным в данном процессе.

 

При известных начальных и конечных параметрах процесса показатель политропы рассчитывается по формуле:

n = . (7.26)

Графическую линию процесса называют политропой.

 

Зависимости между параметрами в политропном процессе:

= ; (7.27)

= = ; (7.28)

= . (7.29)

 

Теплоёмкость политропного процесса может принимать любое значение

от + до – и вычисляется по формуле:

c = c , кДж / (кг град), (7.30)

где k = 1 – показатель адиабаты.

Изменение внутренней энергии одного кг газа определяется по формуле (7.3):

u = u - u = c (T - T ), кДж / кг.

Внешняя работа политропного процесса вычисляется по формуле:

l = = = =

= , кДж / кг, (7.31)

где p и p – давление в начале и в конце процесса, Па.

 

Располагаемая работа в n раз больше работы процесса:

l = nl, кДж / кг. (7.32)

Тепло процесса определяется по формуле:

q = c (T - T ), кДж / кг. (7.33)

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал