Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Физическая и технологическая свариваемостьСтр 1 из 6Следующая ⇒
Билет №1 Сущность процесса сварки. Определение понятия сварки по ГОСТ 2601-84. Сваркой называется процесс получения неразъемных соединений посредством установления межатомных связей между соединяемыми частями при их нагревании и (или) пластическом деформировании (ГОСТ 2601—84). Определение сварки относится к металлам, неметаллическим материалам (пластмассы, стекло и т. д.) и к их сочетаниям. Энергия активации.Для образования неразъемного соединения одного соприкосновения частей с зачищенными поверхностями недостаточно. Межатомные связи могут установиться между частями (деталями) только тогда, когда соединяемые атомы получат энергию извне. В результате затраченной энергии атомы получат соответствующее смещение (движение), позволяющее им занять в общей атомной решетке устойчивое положение, т. е. достигнуть равновесия между силами притяжения и отталкивания. Энергию извне называют энергией активации. Ее при сварке вводят путем нагрева (термическая активация) или пластического деформирования (механическая активация).Соприкосновение свариваемых частей и применение при сварке энергии активации являются необходимыми условиями для образования неразъемных сварных соединений из однородных частей. Эти условия совмещаются при выполнении процесса сварки. По признаку применяемого вида активации в момент образования межатомных связей в неразъемном соединении различают два вида сварки: сварку плавлением и сварку давлением.
Билет №2-3
Физическая и технологическая свариваемость Понятие физической свариваемости – материалы физически свариваемы, если процесс образования соединения термодинамически выгоден, то есть сопровождается уменьшением свободной энергии системы. Если энергии, освобождающейся при уничтожении двух соединяемых поверхностей, для перестройки и искажения решеток в граничном слое будет достаточно, то соединение может произойти самопроизвольно, без дополнительного внешнего воздействия. В противном случае к границе раздела нужно подвести некоторую энергию активации. Необходимым условием установления металлической связи между атомами твердого и жидкого металла является сближение атомов, которое достигается при смачивании твердого тела жидким. С энергетической точки зрения самопроизвольно такое смачивание будет происходить только в том случае, если работа сил притяжения между жидкостью и твердым металлом (работа адгезии) будет равна или больше работы сил притяжения частиц жидкости друг к другу (работа когезии). Смачивание зависит от химического сродства между контактирующими металлами, и в первую очередь, от их взаимной растворимости. Металлы, образующие взаимные растворы или химические соединения и имеющие общие фазы на диаграмме состояний, обычно обладают хорошей взаимной смачиваемостью и наоборот. Смачивание улучшается при меньшей разнице температур плавления. Технологическая свариваемость – материалы свариваемы технологически, если при существующем уровне технологии можно получить работоспособное сварное соединение. Физическая свариваемость не всегда совпадает с технологической по следующим причинам: 1) воздействие условий внешней среды (O2, H2, CO2, N2, орг.вещества); 2) малая пластичность одного или обоих свариваемых материалов; 3) большие остаточные напряжения после сварки (большие упругие деформации кристаллических решеток) свариваемых материалов. Задача инженеров – сварщиков – приблизить технологическую свариваемость к физической. Пример (МВТУ) – УЗК (кость – п/проводник СаО и др. + белковое вещество сложного строения с молекулой ≈ 104 атомов).
БИЛЕТ №4 Сущьность сварочной дуги Сварочной дугой называют дугу, представляющую собой длительный устойчивый электрический разряд в газовой среде между электродом и изделием либо между электродами, отличающуюся большим количеством тепловой энергии и сильным световым излучением. Зажигание дуги. В начале сварки и после каждого короткого замыкания, а для дуг переменного тока и при переходе тока через нуль, дуга должна возбуждаться. Применяются следующие способы возбуждения дуги: 1) коротким замыканием (в основном для СПЭ); 2) бесконтактное (высокочастотная, высоковольтная осцилляция); 3) применение дежурной дуги. 1) При возбуждении коротким замыканием эффективная поверхность мала (от 0, 1 до 1% кажущейся контактной поверхности), а плотность тока соответственно велика. Поэтому конец электрода быстро нагревается теплом, выделяющимся в контактном сопротивлении, и при его отведении образуются перемычки жидкого металла, которые стягиваются в один общий мостик, испаряющийся при достижении температуры кипения. Пары ионизируются под действием высокого напряжения холостого хода источника питания, и напряжение на дуге становится меньше последнего, что создает условия для протекания тока и возбуждения дуги. Устанавливаются параметры дуги: Ua, Uk, Uст, j, T. 2) При бесконтактном возбуждении на дуговой промежуток накладывают большое напряжение высокой частоты (1-10 кВ, 0, 2-5 мГЦ). Вследствие этого увеличиваются эффективные соударения и зарядоносители, возникает маломощная высокочастотная дуга, которая, обладая проводимостью, способствует возбуждению собственно сварочной дуги при относительно низком напряжении холостого хода источника питания. Для дуг переменного тока в момент перехода тока через нуль подают стабилизирующие импульсы, обеспечивающие возбуждение дуги в каждый полупериод. Для плазмотронов, генерирующих мощные плазменные струи, применяют дежурную дугу, горящую между электродом и соплом. Оно является источником и поставщиком зарядоносителей в основной дуговой промежуток, в котором возбуждается рабочая дуга при включении основного источника питания. Виды эмиссии электронов с катода в дугу. 1) Термоэлектронная эмиссия. Jтэ= Т- температура катода, А=120 При высоких температурах энергии теплового движения некоторых электронов оказывается достаточно для преодоления потенциального барьера притяжения электростатического поля ядер атомов кристаллической решетки. 2) Электростатическая (автоэлектронная) эмиссия. Под действием напряженности Е электрического поля, электроны вытягиваются из катода, преодолевая потенциальный барьер у поверхности. Электростатическое поле изменяет работу выхода электрона, Jат=
|