Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Геофизическое выражение зон субдукции. Методы сейсмики, сейсмологии, гравиметрии, магнитометрии, магнитотеллурического зондирования, геотермии






Методы сейсмики, сейсмологии, гравиметрии, магнитометрии, магнитотеллурического зондирования, геотермии, взаимно дополняя друг друга, дают непосредственную информацию о глубинном состоянии вещества и строении зон субдукции, которые удается проследить с их помощью вплоть до нижней мантии.

Многоканальное сейсмопрофилирование позволяет получить структурные профили зон субдукции до глубин в несколько десятков километров при высокой разрешающей способности. На таких профилях бывают различимы главный сместитель зоны субдукции, а также внутреннее строение литосферных плит по обе стороны от этого сместителя.

Рис 6.6. Прослеживание на глубину субдуцирующей океанской литосферы посредством сейсмической томографии. На профиле через центральную часть Идзу-Бонинской зоны субдукции океанская литосфера ложится на поверхность нижней мантии. На профиле через северную часть Курило-Камчатской зоны субдукции океанская литосфера пересекает кровлю нижней мантии и погружается в нее. По Р. Ван-дер-Хилсту и др. (1991).
Штриховками показаны положительные и отрицательные аномалии скоростей продольных волн относительно «нормальных» для соответствующих глубин. Линия на глубине 670 км — поверхность нижней мантии. Точки — сейсмические очаги зон Беньофа, треугольником обозначен глубоководный желоб

Методами сейсмической томографии субдуцирующая литосфера прослеживается глубоко в мантию, поскольку эта литосфера отличается от окружающих пород более высокими упругими свойствами («сейсмической добротностью») и скоростными характеристиками. На профилях видно, как субдуцирующая плита пересекает главный астеносферный слой. В некоторых зонах, в том числе под Камчаткой, она и дальше следует наклонно, уходя в нижнюю мантию до глубины 1200 км (рис. 6.6). В других зонах, и частности в Идзу-Бонинской, дойдя до поверхности нижней мантии (где вязкость пород на глубине 670км возрастает в 10—12 раз), литосфера изгибается, а затем следует горизонтально над этой поверхностью. В целом методами сейсмической томографии удалось проследить субдуцировавшую часть океанских литосферных плит длиной до 1800 км, считая от глубоководного желоба. Исходя из средних скоростей субдукции, это результат конвергентного взаимодействия в течение последних приблизительно 25 млн. лет.

Исключительно важную информацию дают сейсмологические наблюдения очагов землетрясений, возникающих в верхней части субдукции (на глубине до нескольких сотен километров) и мощные наклонные сейсмофокальные зоны — так называемые зоны Беньофа (см. рис. 1, 1).

Конвергентное взаимодействие литосферы в зоне субдукции передает напряжения, которые нарушают изостатическое равновесие, поддерживают изгиб литосферных плит и соответствующий тектонический рельеф. Гравиметрия обнаруживает резкие аномалии силы тяжести, которые вытянуты вдоль зоны субдукции, а при ее пересечении меняются в закономерной последовательности (рис. 6.7). Перед глубоководным желобом в океане обычно прослеживается положительная аномалия до 60 мГл, приуроченная к краевому валу. Полагают, что она обусловлена упругим антиклинальным изгибом океанской литосферы у начала зоны субдукции. Далее следует интенсивная отрицательная аномалия (120—150, реже до 300 мГл), которая протягивается над глубоководным желобом будучи смещена на несколько километров в сторону его островодужного (или континентального) борта. Эта аномалия коррелируется с тектоническим рельефом литосферы, а также во многих случаях с наращиванием мощности осадочного комплекса. По другую сторону глубоководного желоба над висячим крылом зоны субдукции наблюдается высокая положительная аномалия (100—300 мГл). Сопоставление наблюденных значений силы тяжести с расчетными подтверждает, что этот гравитационный максимум может быть обусловлен наклонной субдукцией в астеносферу более плотных пород относительно холодной литосферы. В островодужных системах на продолжении гравитационного профиля обычно следуют небольшие положительные аномалии над бассейном краевого моря.

Рис. 6.7. Пересечение Японской зоны субдукции (40° с. ш.), по С. Уеде (1981):
I — рельеф; II — структура земной коры (скорости продольных волн); III — гравитационные аномалии в свободном воздухе (для моря) и Буге (для суши); IV — тепловой поток; V — сейсмические очаги (V — скорости сейсмических волн, Q — механическая добротность)

Современная субдукция находит выражение и в данных магнитометрии. На картах линейных магнитных аномалий бассейнов марианского типа отчетливо различаются их тектонические границы рифтогенной и субдукционной природы. Если по отношению к первым линейные аномалии океанской коры согласны (параллельны им), то субдукционные границы секущие, они срезают системы аномалий под любым углом в зависимости от конвергентного взаимодействия литосферных плит.

При погружении океанской литосферы в глубоководный желоб интенсивность линейных аномалий нередко снижается в несколько раз, что предположительно объясняют размагничиванием пород в связи с напряжениями изгиба. В других случаях аномалии удается проследить до конвергентной границы и даже дальше. На рис. 6.12 приведена карта магнитного поля одного из отрезков Центральноамериканского желоба (16—17° с. ш.). Линейные аномалии океанской коры, имеющей здесь миоценовый возраст, вытянуты в направлении ЮВ—СЗ, пересекают ось глубоководного желоба, а дальше прослеживаются под висячим крылом зоны субдукции в полосе шириной около 25км. Уходящая на глубину океанская литосфера как бы просвечивает сквозь смятые в складки осадочные комплексы континентальной окраины. Еще дальше, где она погружается под мощную гранитогнейсовую кору, линейные аномалии теряются.

Геотермические наблюдения обнаруживают снижение теплового потока по мере погружения относительно холодной литосферы под островодужный (или континентальный) борт глубоководного желоба. Однако дальше, с приближением к поясу активных вулканов, тепловой поток резко возрастает. Как полагают, там выносится энергия, выделяющаяся на глубине в результате субдукционного трения, адиабатического сжатия и экзотермических минеральных превращений.

Таким образом, данные разных геофизических методов находятся в достаточно хорошем соответствии между собой, они послужили основой для модели литосферной субдукции, которая по мере пополнения этих данных проверялась и уточнялась.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал