Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Литосферные плиты.
Главными структурными единицами на уровне литосферы являются литосферные плиты, отражающие ее латеральные неоднородности. Их границы пересекают земную кору и надастеносферную мантию, а часто по сейсмическим данным прослеживаются до значительных глубин в нижней мантии. Среди структур второго порядка внутри литосферных плит выделяются их континентальные и океанические сегменты (континенты и океаны), наиболее резко отличающиеся строением земной коры. Развитие главных структурных единиц литосферы описывается тектоникой литосферных плит. В основных положениях тектоники литосферных плит выделяются шесть постулатов. 1) В верхних оболочках твердой Земли по реологическим свойствам выделяется хрупкая оболочка – литосфера и, подстилающая ее, пластичная оболочка – астеносфера. 2) Литосфера разделена на ограниченное число крупных и малых плит. Крупные литосферные плиты это – Евразийская, Африканская, Северо-Американская, Южно-Американская, Тихоокеанская, Австралийская, Наска. Среди малых плит и микроплит выделяются: Хуан-де-Фука, Кокос, Карибская, Аравийская, Китайская, Индокитайская, Охотская, Филиппинская. 3) Выделяется три типа границ литосферных плит: дивергентные границы, вдоль которых происходит раздвижение плит; конвергентные границы, по которым плиты сближаются и погружаются одна под другую или сталкиваются друг с другом, трансформные границы, где плиты скользят друг относительно друга. 4) Горизонтальное движение плит может быть описано законами сферической геометрии Эйлера, согласно которым любое перемещение двух сопряженных точек на сфере совершается вдоль окружности, проведенной относительно оси, проходящей через центр Земли. Выход этой оси на земную поверхность называется полюсом вращения или раскрытия. 5) Площадь поглощаемой на конвергентных границах океанской коры, равна площади коры, образующейся на дивергентных границах. 6) Основная причина движения литосферных плит – это конвекция в мантии. Важным дополнением к «классической» тектонике плит служит тектоника плюмов, представления которой стали формироваться одновременно с тектоникой плит, использовавшей «горячие точки» океанов для трассирования движения литосферных плит. В настоящее время по данным сейсмической томографии выделяются потоки разуплотненного разогретого вещества (плюмы), исходящие с разных глубинных оболочек Земли. Дивергентные границы литосферных плит обусловлены процессами рифтогенеза и отражают геодинамические условия латерального растяжения, ориентированного в основном вкрест простирания дивергентных границ. В морфологическом отношении рифтовые структуры выражены сложными системами грабенов, ограниченных сбросами. Большинство рифтовых структур образуют единую глобальную систему, пересекающую континенты и океаны. Большая часть системы (около 60 тыс. км) расположена в океанах и выражена срединно-океаническими хребтами. На континентах океанические рифты часто продолжаются континентальными рифтами. При пересечении с активными окраинами континентов срединно-океанические хребты могут поглощаться в зонах субдукции. Отмирание рифтовых зон по простиранию носит постепенный характер, или пресекается трансформными разломами. Рифтовые зоны образуют почти полное кольцо вокруг Южного полюса на широтах 40-60°. От этого кольца отходят в меридиональном направлении три затухающие к северу ветви: Восточно-Тихоокеанская, Атлантическая и Индоокеанская. Вне глобальной системы находятся лишь немногие из крупных рифтовых зон. Среди механизмов рифтогенеза выделяют деформационный рифтогенез и механизм гидравлического расклинивания. При деформационном рифтогенезе растяжение реализуется разрывными и вязкими деформациями в относительно узкой полосе с уменьшением мощности этой полосы и образованием «шейки». Предложено несколько моделей деформационного рифтогенеза. Модель Р. Смита и др. с субгоризонтальным срывом между ярусом хрупких и ярусом пластических деформаций; модель У. Гамильтона и др. с линзовидным характером деформаций; модель Б. Вернике, рассматривающая асимметричную деформацию на основе пологого сброса. Механизм гидравлического расклинивания предусматривает в качестве активной силы базальтовую магму, которая раздвигает породы, внедряясь снизу в вертикальные трещины между ними и образуя рои параллельных даек. Трещины возникают в результате гидроразрыва под действием той же магмы. Раскрытие зон спрединга может происходить двумя путями. Первый из них активный рифтогенез исходит из первичности восходящего потока астеносферного вещества. Поток поднимает и раздвигает литосферу, что в конечном итоге приводит к ее утонению и разрыву. Пассивный рифтогенез обусловлен растягивающими усилиями, которые приложены непосредственно к деформируемому слою. Трансформные границы литосферных плит сочетаются и дополняют дивергентные границы. Наиболее ярко они выражены в пределах срединно-океанических хребтов, где делят их на разновозрастные фрагменты и смещают вкрест простирания. Важнейшим свойством дивергентных и трансформных границ является то, что в их пределах в процессе спрединга зарождается новая океаническая кора. Конвергентные границы литосферных плит характеризуются сближением плит в геодинамических условиях преобладающего латерального сжатия. Они выражены зонами субдукции, в которых океаническая кора погружается под континентальную, или океаническая кора погружается под океаническую, но более молодую. При сближении с последующим столкновением континентальных сегментов литосферных плит конвергентные границы выражаются коллизией. В определенных условиях субдукция и коллизия могут сопровождаться обдукцией – надвиганием океанической коры на континентальную. Большинство зон субдукции расположено по периферии Тихого океана. Другая система отходит от Тихоокеанской на запад и, чередуясь с коллизионными участками, следует от Зондской зоны до Калабрийской в Средиземном море и Гибралтарской. Современные коллизионные зоны связаны в основном со Средиземноморско-Гималайским складчатым поясом. В их пределах происходит тектоническое скучивание, приводящее к интенсивным складчато-надвиговым деформациям и формированию горных сооружений – орогенов. Также как на дивергентных и трансформных границах, в пределах конвергентных границ происходит формирование новой коры, но коры континентального типа. Внутриплитные тектонические процессы и структуры ими порождаемые в настоящее время являются объектом интенсивного изучения. Среди основных типов внутриплитных дислокаций выделяются планетарная трещиноватость и тесно связанные с ней линеаменты, зоны складчатых дислокаций и кольцевые структуры. Планетарная трещиноватость представляется наиболее универсальным и повсеместно распространенным типом внутриплитных дислокаций. Наиболее изучена она на континентальных сегментах литосферных плит, где лучше всего проявлена в недеформированном виде в отложениях платформенного чехла. Важнейшей ее особенностью является преобладание двух генераций трещин: послойных (субгоризонтальных) и нормальных (перпендикулярных к границам слоя). Расстояния между нормальными трещинами являются функцией мощности слоя и состава пород его слагающих. В общем случае, чем больше мощность слоя, разорванного трещинами, тем больше расстояние (шаг) между ними. Кроме того, нормальные трещины делятся на системы – совокупности трещин с близкими элементами залегания. Среди систем чаще всего выделяют субмеридиональную, субширотную и две диагональные (северо-западную и северо-восточную). Особенности планетарной трещиноватости связывают с ротационными факторами – нестационарностями скорости вращения планеты вокруг своей оси. Термин линеамент впервые был предложен американским геологом У. Хоббсом в 1911 г. для обозначения, вытянутых в одном направлении глобальных элементов рельефа и структуры. Новое свое значение он получил в процессе широкого применения в геологии аэро- и космоснимков, как отражение на земной поверхности разрывных нарушений различного ранга (в том числе и планетарной трещиноватости). Внутриплитные зоны складчатых дислокаций обнаруживаются на всех континентах, а в настоящее время начинают выделяться и в пределах океанического дна. Их протяженность достигает сотен километров при ширине многие десятки километров. Часть из них образуются над древними рифтами в результате инверсии движений, другие формируются параллельно ближайшим складчатым поясам и синхронно с ними. По происхождению тесно связаны с ними эпиплатформенные орогены. Широко распространены пологие линейные поднятия и прогибы, рассматриваемые как литосферные складки. Кольцевые структуры (морфоструктуры центрального типа ) активно начали изучаться в тесной связи с развитием космической геологии. Среди них выделяют структуры магматогенного происхождения (вулканогенные, вулканогенно-плутонические, плутонические); метаморфогенные (гранитогнейсовые купола); диапировые структуры соляных, глиняных толщ, сводовые поднятия и погружения; а также термокарстовые и карстовые формы, связанные с экзогенными процессами. Особую группу образуют структуры ударного (метеоритного) происхождения. Значительную часть из выделенных при дешифрировании кольцевых объектов относят к категории криптоструктур (структур неустановленного происхождения). Ударные (метеоритные, космогенные) структуры образуются при падении на Землю небесных тел различного типа и размера. К метеоритным кратерам относятся котловины на поверхности Земли, сохраняющие морфологические черты ударного происхождения. Структуры, которые утратили эти черты вследствие денудации принято называть астроблемами (звездными шрамами). Скорости подхода космических тел к Земле изменяются от 11 до 76 км/с. Небольшие по размерам тела при входе в атмосферу теряют скорость вследствие торможения. Они полностью могут «сгорать» в атмосфере. Но уже тела размером 10-20 м, сталкиваясь с Землей со скоростью первые километры в секунду, способны формировать кратеры и оставлять в них свои обломки. Если скорость таких тел при ударе составляет 30 и более км/с, развивается давление 1500 ГПа, что примерно в 50 раз больше, чем в центре Земли. При этом температура составляет десятки тысяч градусов. В таких условиях происходит почти полное испарение метеорного вещества. Кратеры заполнены ударной брекчией, залегающей на раздробленных коренных породах. В центральной части кратеров часто выделяется центральное поднятие, сложенное хаотической брекчией. Породы, выполняющие кратер (импактиты), образуются при огромном давлении и высокой температуре. Среди них выделяются следующие разновидности. Аутигенная брекчия – это раздробленные коренные породы, не испытавшие значительного перемещения. Они залегают в основании разреза. Аллогенная брекчия образована упавшими назад в кратер обломками различных размеров, сцементированных рыхлым обломочным материалом (коптокластом). Мощность брекчии может достигать 100 и более метров. Зювиты, представляющие собой спекшуюся массу обломков стекла и пород, вместе с другими породами выполняют внутренние части кратеров. Кроме того, они распространяются отдельными языками за пределами кратеров. Тагамиты залегают внутри воронок. Они образуют неправильные пластообразные и линзообразные тела на поверхности аутигенной брекчии или над аллогенной брекчией и зювитами, а также формируют дайки и жерла в аутигенной брекчии и псевдопокровы. Представлены тагамиты однообразными пятнистыми породами с пористой, иногда пемзовидной структурой, состоящими из обломков темно-серого или цветного стекла. Псевдотахилиты – переплавленные стекловатые или раскристаллизованные породы, образующие жилы в аутигенных брекчиях. Они образуются в результате фрикционного плавления на границах трущихся друг о друга блоков. Океаны
Важнейшими морфоструктурными элементами океанов являются срединно-океанические хребты, трансформные разломы и абиссальные равнины. Срединно-океанические хребты и трансформные разломы, являясь частью глобальной системы рифтов, проявляются во всех океанах как зоны спрединга – расширения океанического дна за счет образующейся в их осевых частях новой коры. Хребты – это грандиозные горные сооружения, средняя ширина которых изменяется от нескольких сотен километров до 2000-4000 км, относительное превышение над океаническим ложем составляет 1-3 км. Вершины хребтов находятся на глубинах в среднем 2, 5 км. Рельеф хребтов сильно расчленен. При этом по мере удаления от оси горные шпили сменяются холмистым рельефом, который постепенно сглаживается на переходе к абиссальным равнинам. Хребты, таким образом, подразделяются на две геоморфологические зоны: зону гребня и зону склонов (флангов). Гребневые зоны состоят из горных систем и разделяющих их долинообразных понижений, вытянутых в соответствии с общим простиранием. В центральной осевой зоне срединно-океанических хребтов высота гор максимальна. Здесь они сопряжены с узкой (10-40 км) и глубокой (1-4 км) рифтовой долиной с крутыми (около 40°) бортами, которые разделяются на несколько уступов. В уступах обнажаются подушечные лавы (пиллоу-лавы). Рифтовая долина характеризуется блоково-грядовым расчленением. Ее центральная часть состоит из застывших базальтовых куполов и рукавообразных потоков, расчлененных гьярами – зияющими трещинами растяжения без вертикального смещения шириной 0, 5 – 3 м (иногда до 20 м) и протяженностью десятки метров. Срединно-океанические хребты Тихого океана по сравнению с хребтами Атлантического, Индийского и Северного Ледовитого (Арктического) океанов характеризуются менее контрастными формами рельефа, рифтовая долина в них выражена нечетко, широко развиты вулканические формы. Срединно-океанические хребты пересекаются трансформными разломами (Дж. Т. Вилсон, 1965), которые смещают фрагменты хребтов в направлениях, поперечных к простиранию хребтов. Амплитуда смещения составляет сотни километров (до 750 км в приэкваториальных областях Атлантики). В рельефе дна океана трансформные разломы выражены узкими трогами с крутыми склонами. Их глубина достигает 7-8 км (разломы Элтанин и Романш). Трансформные разломы – это особого типа разрывы со сдвиговым смещением, которые переносят (трансформируют) горизонтальное движение литосферы от одной активной границы к другой. Трансформные разломы рифтовых соответствуют типу «хребет-хребет» (снимают напряжения между двумя отрезками рифтовой зоны). Причины накопления напряжений между сегментами хребта связаны с неравномерностью спрединга. В строении трансформных разломов выделяется активная и пассивные части. В пределах активной части происходит формирование новой океанической коры. По протяженности среди трансформных разломов выделяются магистральные (по В. Е. Хаину), или демаркационные (по Ю. М. Пущаровскому) Их протяженность десятки тысяч километров, а расстояния их разделяющие около тысячи километров. Они пересекают океаны и могут выходить на континенты. Такие трансформные разломы делят океаны на сегменты, раскрывшиеся в разное время. Менее протяженные трансформные разломы пересекают срединно-океанические хребты через каждые 100-200 км и продолжаются на некоторые расстояния в пределах абиссальных равнин. Разломы следующей категории не выходят за пределы хребтов и отстоят друг от друга на десятки километров. Наконец, более мелкие разломы пересекают лишь гребневые зоны и Рифтовые долины. В геофизических полях срединно-океанические хребты выражены весьма отчетливо. Зона гребня отличается повышенной сейсмичностью. При этом глубина гипоцентров землетрясений обычно не превышает первых километров. В гравитационном поле вдоль оси хребта выделяются отрицательные аномалии. В сочетании с повышенным тепловым потоком гребневой зоны они фиксируют магматические камеры, в которых концентрируются магмы, представляющие результат выплавки базальтовой компоненты из залегающей вблизи поверхности астеносферы. Магнитное поле срединно-океанических хребтов характеризуется полосовыми магнитными аномалиями. Они следуют параллельно и симметрично оси хребта и представляют чередование прямой и обратной полярности. Аномалиям присвоены номера, счет которых начинается симметрично по обе стороны от осевой зоны. Расстояние между одноименными аномалиями в разных рифтовых зонах может быть различным. Оно не остается постоянным и вдоль одной и той же аномалии. Иногда симметрия аномалий относительно оси рифта различна по разным сторонам: по одну сторону аномалии расположены сжато, а по другую – разреженно. Все эти особенности объясняются тем, что при кристаллизации магмы в зоне раздвига остаточная намагниченность фиксирует в горных породах геомагнитные характеристики (модель Ф. Вайна – Д. Мэтьюза из Кембриджского университета США, 1963 г.). По мере своего формирования новообразованная океаническая кора отодвигается от оси спрединга и, подобно магнитной ленте записывает вариации геомагнитного поля, в том числе инверсии полярности. Поскольку наращивание коры происходит по обе стороны от оси спрединга, образуются две, дублирующие друг друга магнитные записи. Расстояние между одноименными аномалиями, при условии датирования их возраста, позволяет определить скорость спрединга. Полученные по этой методике скорости изменяются от долей сантиметра до 15-18 см / год. Поскольку спрединг развивается обычно симметрично, полная скорость раздвигания литосферных плит в два раза больше скорости спрединга. Глобальная аномалийная шкала в настоящее время разработана достаточно подробно. В частности, 34 аномалия, имеющая нормальную полярность, занимает широкую полосу дна и трактуется как «меловая зона спокойного магнитного поля (120-84 млн. лет). Выделяются и более древние аномалии с датировками вплоть до 167, 5 млн. лет (юра). Таким образом, использование данных по полосовым аномалиям позволило реконструировать историю океанов, а также всей глобальной системы относительного перемещения литосферных плит с середины мезозоя до настоящего времени. Тектономагматические процессы зон спрединга формируют океаническую кору из вещества, отделяющегося от мантии. По объему продуктов современного вулканизма океанические зоны спрединга в три раза превосходят все остальные виды вулканизма вместе взятые и составляют около 4 км³ / год. Основные разновидности магматических пород срединных океанических хребтов образованы базальтоидами, габброидами, а также перидотитами – тугоплавким остатком мантийного вещества. Для хребтов характерен особый геохимический тип базальтоидов, обозначаемых обычно аббревиатурой MORB (Mid-Oceanic Ridge Basalts) или СОХ (Срединно-Океанических Хребтов), или толеитовых базальтов. Для океанических толеитов нормального типа (N-MORB) отмечается малое содержание подвижных (некогерентных) элементов, под которыми подразумеваются элементы, обладающие ионными радиусами и зарядами, не позволяющими легко входить в породообразующие минералы. Поэтому они обладают очень низкими коэффициентами распределения кристалл – жидкость и накапливаются в системе по мере кристаллизации. К ним относятся калий, цирконий, барий, большинство TR и пр. Такие базальты считают результатом частичного плавления геохимически истощенной (деплетированной) мантии на сравнительно небольших глубинах. При этом степень плавления исходных пород была высокой, что выразилось обогащением расплава элементами группы железа. К вулканическим зонам срединно-океаническиххребтов приурочены выходы гидротерм. С ними связаны металлоносные осадки и специфические отложения «черных и белых курильщиков». Металлоносные осадки – это рыхлые полигенные образования, обогащенные в основном железом и марганцем гидротермального происхождения. Современные осадки приурочены к осевым частям и флангам спрединговых хребтов, к окрестностям гидротермальных полей. По мере развития спрединга металлоносные осадки переходят в погребенное состояние и залегают в основании разреза осадочного чехла океана, где их мощность может достигать нескольких десятков метров. Эти образования выделяются в самостоятельную металлоносную базальную формацию. «Черные курильщики» - трубообразные конусы сульфидных построек, через которые поступают гидротермальные растворы с температурой 350-400°С, насыщенные взвесью минеральных частиц, рассеивающихся в водной среде подобно дыму. Они сопровождаются уникальным, полностью независимым от экзогенных источников питания, комплексом биоты. Холмы и конусные постройки образуют залежи массивных сульфидных руд массой несколько тысяч тонн. Отмечаются также плащеобразные покровы массивных сульфидных руд, мощностью до 10 м. Масса некоторых из таких образований может достигать 2 млн. тонн. Сульфидные руды локализуются в основном в осевых зонах срединно-океанических хребтов. «Белые курильщики» - тип относительно низкотемпературных гидротермальных источников с температурой менее 300°С, функционирующих в парагенезе с «черными курильщиками». Однако, если дым «черных курильщиков» состоит из сульфидов железа, цинка, меди с примесью аморфного кремнезема, то дым «белых курильщиков» образован сульфатами (ангидритом, баритом) и аморфным кремнеземом. Относительно недавно на вершине подводной горы Атлантис в пределах Срединно-Атлантического хребта, в 15 км к западу от его оси на глубине 2600 футов обнаружен еще один неизвестный ранее тип гидротерм. В рельефе дна эти гидротермы представлены громадными ослепительно белыми башнями высотой до 60 м и шириной в основании около 100 м, базирующихся на перидотитах. Они получили название Lost City (Затерянный Город). Башни состоят из карбонатов – кальцита, арагонита, брукита. Они лишены дыма, вместо которого из трещин изливаются потоки воды с температурой 50-80°С. Источник тепла - процесс остывания ультраосновных пород. Дополнительно оно вырабатывается за счет химической реакции, при которой оливин (основной минерал перидотита) взаимодействует с морской водой, растворенными в ней солями и переходит в серпентинит и карбонаты, слагающие описанные гидротермальные сооружения. «Затерянный Город» обильно заселен бактериями, образующими обширные маты. Они питаются метаном и водородом, которые выделяются в процессе реакции. В зависимости от скорости спрединга выделяют зоны с быстрым спредингом (скорость более 7 см/год), средним спредингом (скорость 3-7 см/год), медленным спредингом (скорость 1-3 см/год) и ультрамедленным спредингом (скорость до 1 см/год). Скорость спрединга тесно связана с рельефом океанических спрединговых зон. Примером высокоскоростного спрединга может служить Восточно-Тихоокеанское поднятие, которое отличается большой шириной, слабо выраженной рифтовой впадиной (вплоть до ее полного отсутствия и замещения горстообразным выступом). Срединно-Атлантический хребет на разных своих участках обладает низкими и средними скоростями спрединга. Его рельеф – это рельеф «классического» срединно-океанического хребта. К рифтовым зонам с ультрамедленным спредингом относится хребет Гаккеля в Северном Ледовитом океане. В рельефе дна он представлен практически одной узкой рифтовой долиной. Изменение скорости спрединга в срединно-океанических хребтах носит циклический характер, что выражается в тектоноэвстатических трансгрессиях и регрессиях. При быстром спрединге новая кора образуется в больших объемах, гребневая часть хребтов не успевает остывать, и хребты приобретают большую ширину, «выдавливают» воду океанов на сушу, что вызывает глобальную трансгрессию. При медленном спрединге вновь образованная океаническая кора формируется в меньших объемах, успевает остывать. Глубина океанических впадин возрастает, равно как и их объем. Вода с континентов «стягивается» в океан, происходит глобальная регрессия. От скорости дивергенции зависит и обособление базальтовой магмы. С повышением скорости спрединга магматическая камера хребтов размещается все ближе к поверхности. Магма имеет более высокую температуру и низкую вязкость, поэтому при излиянии образует обширные покровы, подобные платобазальтам континентов. При медленном спрединге формируются подушечные лавы. Малые скорости спрединга затрудняют выход расплава на поверхность, возрастает степень дифференциации магмы, появляются порфировые разности базальтов. С возрастанием скорости спрединга в породах увеличивается содержание титана, возрастает отношение количества железа к количеству магния. В спрединговых зонах с высокой скоростью спрединга преобладает механизм гидравлического расклинивания. Он выражен в том, что при быстром подъеме базальтовой магмы обеспечивается расклинивающий эффект, который оказывает магма на породы земной коры. Застывшие магматические клинья выражены системами параллельных даек в основании океанической коры. В условиях медленного спрединга важную роль может играть деформационный механизм рифтогенеза, при котором растяжение реализуется разрывными и вязкими деформациями земной коры в относительно узкой полосе с уменьшением ее мощности. Отмирание зон океанического рифтогенеза может происходить при изменении внешних геодинамических условий. В результате могут формироваться палеоспрединговые хребты. Один из вариантов такого отмирания – это резкое смещение, перескок (jumping) оси спрединга. После того, как скорость спрединга снижается до минимальных значений, растягивающие напряжения прекращаются и наступает длительная пассивная фаза, когда литосфера под хребтом охлаждается, наращивает свою мощность снизу за счет кристаллизации астеносферного материала. Это сопровождается изостатическим опусканием, рельеф хребта сглаживается, он все больше перекрывается осадочным чехлом. Абиссальные равнины по площади являются преобладающим элементом строения океанического ложа. Они располагаются между срединно-океаническими хребтами и подножиями континентов и имеют глубину от 4 до 6 км. Кора в пределах абиссальных равнин выдержана по толщине, за исключением того, что осадочный слой в направлении к континентальным окраинам увеличивается по мощности за счет появления все более древних горизонтов, вплоть до верхов средней юры. Некоторые равнины (особенно в Атлантическом и Индийском океанах) обладают идеально плоской поверхностью дна, другие, преимущественно в Тихом океане, характеризуются холмистым рельефом. Среди равнин возвышаются подводные вулканические горы. Их особенно много в пределах Тихого океана. Особую разновидность подводных гор образуют гийоты – плосковершинные возвышенности вулканического происхождения, встречающиеся на глубине около 2 км. Их вершины ранее были срезаны морской абразией, затем перекрыты мелководными осадками, иногда, рифами, и далее погрузились в результате охлаждения коры ниже уровня океана. Абиссальные равнины крупными подводными хребтами и возвышенностями разделяются на отдельные котловины. Среди подводных поднятий выделяются изометричные возвышенности овально-округлой формы (Бермудское в Атлантики), плоские возвышенности за счет осадочного чехла – океанские плато (Онтонг-Джава в Тихом океане). Другие – линейные, протягивающиеся на тысячи километров при ширине сотни километров (Мальдивский и Восточно-Индийский хребты в Индийском океане). Все эти хребты и возвышенности поднимаются над смежными котловинами на 2-3 км. Кое-где их вершины выступают над уровнем моря в виде островов (Бермудские острова). Для большинства поднятий очевидно вулканическое происхождение. Для Императорско-Гавайского хребта оно доказывается современным вулканизмом на о. Гавайи, вулканической природой остальных островов Гавайской цепи. Для этих и других островов, кроме эффузивов, известны интрузии пород – дифференциатов щелочно-базальтовой магмы. Практически под всеми подводными поднятиями отмечается утолщение коры, которое может превышать 30 км. Первоначально значительная часть внутренних поднятий океана с утолщенной корой относилась к микроконтинентам. Однако последующие исследования показали, что число современных представителей этой категории структур весьма ограниченно. В Атлантике к ним относится плато Роккол, в Индийском океане – Мадагаскар. В Тихом океане Новая Зеландия с Новозеландским подводным плато. В Северном Ледовитом океане - хр. Ломоносова. Микроконтиненты обладают плоской поверхностью, лежащей на глубине около 2 км, но отдельные их части могут выступать над водой в виде островов. По сравнению с абиссальными равнинами осадочный чехол микроконтинентов обладает увеличенной мощностью. В нем могут присутствовать отложения, предшествующие раскрытию данного океана. Возраст фундамента может изменяться от палеозойского до архейского. Микроконтиненты откалывались от континентов на ранних стадиях раскрытия океана. Затем ось спрединга перескакивала в центральную часть современного океана. Современный Мировой океан состоит из нескольких океанов. Из них Тихий океан – самый большой океан нашей планеты. Он занимает около трети поверхности земного шара и почти половину площади Мирового океана – 178, 6 млн. км². Это самый глубокий океан, его средняя глубина более 4 км, а максимальная – 11022 м отмечена в Марианской впадине. Ложе океана занимает 63% его площади. Системой поднятий оно разделяется на ряд котловин, наиболее крупные из которых расположены по центральной оси ложа. На западе для котловин характерна холмистая поверхность, в восточной части океана (Северо-Восточная, южная котловины и др.) отмечается грядово-холмистый рельеф. Ложе осложнено вулканическими хребтами (Императорский, Гавайский хребты и др.). Характерны также многочисленные (около 7 тысяч) гийоты. В основном они расположены на сводовых поднятиях, валах, а также вдоль разломов. В восточной части расположен Тихоокеанский срединный хребет, смещенный относительно средней линии к востоку. Площадь его – 13% общей площади океана. Значительная часть хребта в северном полушарии уходит под Северную Америку. Отличительная черта – его сравнительно небольшая высота (от 1 до 2, 5 км), значительная ширина (до 3 тыс. км), отсутствие четко выраженной рифтовой долины. Осевой блок здесь часто представлен гребнем высотой в несколько сотен метров и шириной несколько десятков километров. Тихоокеанский хребет разделяется на несколько звеньев. Среди них Южно- и Восточно-Тихоокеанское поднятия, хребты Гордн и Хуан-де-Фука. Выделяются также две большие ветви – Галапагосская и Чилийская. Среди наиболее крупных трансформных разломов, рассекающих хребет на сегменты, смещенные друг относительно друга в широтном направлении выделяются: Элтанин, Галапагосский, Мендосино, Кларион, Клипперон. Специфической морфоструктурой Тихого океана является Новозеландское плато – глыба материковой коры, не связанная с окружающими континентами. Атлантический океан составляет около четверти Мирового океана (площадь 90, 5 млн. км²). Его средняя глубина составляет 3844 м. Ложе океана (около 35% его общей площади) характеризуется сочетанием глубоководных котловин (Северо-Американская, Канарская, Западно-Европейская, Бразильская, Ангольская, Капская) и подводных поднятий. Для котловин характерен абиссальный холмистый рельеф. Срединно-Атлантический хребет занимает почти половину площади океана. Его ширина около 1400 км при превышении над дном до 4 км, склоны его крутые. Рифтовая зона на всем своем протяжении отчетливо выражена. Трансформными разломами хребет разделен на несколько фрагментов: северный (хребты Книповича и Мона) доходит до о. Ян-Майен; далее следуют хребет Кольбейнст и Большой Исландский грабен (о. Исландия). К югу он продолжается хребтом Рейкьянес и до Азорских островов имеет строго меридиональное простирание. В районе экватора, трансформные разломы Романш, Вима, Сан-Паулу, Чейн и др. смещают его на несколько сотен километров. Южно-Атлантический хребет сохраняет субмеридиональное положение. Средиземноморский бассейн в океанологическом отношении принадлежит бассейну Атлантического океана, а в тектоническом смысле отличается сложным строением, отражающим длительное его развитие, в значительной степени унаследованное отполициклического океана Тетис. Средиземное море через Дарданеллы - Мраморное море - Босфор соединяется с глубоководным Черным морем. В пределах Средиземноморья имеются глубоководные котловины, во многом сходные с океаническими, обширные мелководные плато, глубоководные желоба и рифтовые зоны, подводные хребты и отдельные вулканы. Восточная часть Средиземного моря одновозрастна с основным океаном Тетис. Она представляет собой южные глубоководные бассейны этого океана. Западная часть Средиземного моря (Западно-Средиземноморский бассейн) возникла на неотектоническом этапе (в олигоцене) как малый океанический бассейн уже после закрытия океана Тетис. Индийский океан имеет площадь 76, 8 млн. км² (около 20% площади Мирового океана). Его средняя глубина 3963 м. Ложе океана состоит из 24 глубоководных котловин из которых наиболее крупные: Центральная, Западно-Австралийская, Мадагаскарская, Сомалийская. Ложе осложнено меридиональными разломами. В пределах котловин выявлено около тысячи гийотов. Котловины разделены подводными поднятиями (хребтами): Мальдивским, Восточно-Индийским, Мадагаскарским, Мозамбикским, Маскаренским, Амирантским и др. Срединно-океанические хребты Индийского океана – это сложная система подводных горных цепей, в которую входят: Западно-Индийский хребет, продолжающий систему Срединно-Атлантических хребтов; Австрало-Антарктический хребет, соединяющийся с хребтами Тихого океана; Центрально-Индийский хребет, возникший при слиянии первых двух хребтов.; Аравийско-Индийский; хребет (Карлсберг). Срединно-Океанические хребты осложнены трансформными разломами. Северный Ледовитый океан – самый маленький океан. Его площадь 15, 2 млн. км² (4, 2% площади Мирового океана). Средняя глубина 1300 м. Ложе океана составляет 40% его площади и образовано небольшими глубоководными котловинами: Амундсена, Нансена, Макарова, Толя, Бофорта. Они разделены подводными поднятиями – погруженными блоками континентальной коры, выраженные хребтами: Ломоносова, Менделеева, Альфа. Срединно-океанический хребет продолжает Срединно-Атлантический хребет. Он начинается хребтом Гаккеля, который обладает незначительной шириной, редуцированными флангами. В сущности, он образован одной рифтовой долиной. Предполагается его продолжение на суше в дельте Лены в системе Момского рифта. Возраст океанов, ограниченных пассивными окраинами, определяется возрастом их наиболее древней коры, соответствующей началу раскрытия океанов. Для Атлантического океана – это 170 млн. лет (батский-келловейский века средней юры). Для Индийского океана – 158 млн. лет (оксфордский век поздней юры). Для Северного Ледовитого океана – 120 млн. лет (ранний мел). Для Тихого океана, окруженного активными окраинами, на основе палеогеографических реконструкций выделены фрагменты бывших пассивных окраин с возрастом, относящимся к позднему рифею (в Северо-Американских Кордильерах), позднему рифею – раннему кембрию (складчатая система Аделаида в Австралии). Таким образом, современная молодая кора Тихого океана является лишь обновленной, а само начало существования этого океана относится к позднему протерозою, хотя с того времени его площадь и конфигурация претерпели существенные изменения. Приведенные датировки возраста современных океанов относятся к наиболее древним их частям. Однако раскрытие океанов происходило не сразу на всем протяжении, а по отдельным сегментам, разделенным магистральными трансформными разломами. В конце средней юры и в продолжение поздней юры раскрылся центральный сегмент Атлантики между Азоро-Гибралтарским разломом на севере и Экваториальной зоной разломов на юге. В течение раннего мела процесс распространился к северу до магистрального трансформного разлома Чарли – Гиббса. В конце мела спрединг достиг Гренландско-Фарерского порога, проходящего через Исландию. На этом этапе сформировалась побочная – Лабрадорская ветвь спрединга, отделившая к концу эоцена Гренландию от Северной Америки. В конце палеоцена – начале эоцена спрединг распространился из Северной Атлантики в Норвежско-Гренландский бассейн Арктики, затем, преодолев Шпицбергенский разлом, проник в Евразийскую котловину Северного Ледовитого океана, сформировав хребет Гаккеля. В Южной Атлантике процесс пропагации спрединга также происходил с юга на север. В поздней юре произошло отделение Африки от Южной Америки и Антарктиды и к началу мела раскрытие дошло до Фолклендско-Агульясского разлома. В неокоме оно продвинулось на север до разлома Риу-Гранди. В конце апта – Альбе раскрылся Анголо-Бразильский сегмент, а в конце сеномана произошло объединение Южной и Центральной Атлантики. В Индийском океане в поздней юре спрединг распространялся на юго-запад, отделяя Африку от Индии, Мадагаскара и Антарктиды., а затем с севера на юг и юго-восток, отделив в конце юры – начале мела Индию от Австралии и в начале сеномана – Австралию от Антарктиды.В позднем миоцене спрединг развивался от разлома Оуэн в Аденский залив и в Красное море. Сложнее шло развитие Тихого океана, где происходила перестройка плана расположения осей спрединга. Современные их очертания начало формироваться в конце мела.
|