![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Глава 2. Преобразование непрерывных сигналов в дискретные
§ 2.1. ПРЕИМУЩЕСТВА ЦИФРОВОЙ ФОРМЫ ПРЕДСТАВЛЕНИЯ СИГНАЛОВ
В любую систему информация поступает в виде сигналов. Различные параметры физических процессов с помощью датчиков обычно преобразуются в электрические сигналы. Как правило, ими являются непрерывно изменяющиеся ток или напряжение, но возможно поступление и импульсных сигналов, как, например. в радиолокации. Печатный текст отображается буквами, цифрами и другими знаками. Хотя поступающую информацию можно хранить, передавать и обрабатывать как в виде непрерывных, так и в виде дискретных сигналов, на современном этапе развития информационной техники предпочтение отдается дискретным сигналам, поэтому сигналы, как правило, преобразуются в дискретные. С этой целью каждый непрерывный сигнал подвергается операциям квантования по времени (дискретизации) и по уровню. Под дискретизацией подразумевают, преобразование функции непрерывного времени в функцию дискретного времени, представляемую совокупностью величин, называемых координатами, по значениям которых исходная непрерывная функция может быть восстановлена с заданной точностью. Роль координат часто выполняют мгновенные значения функции, отсчитанные в определенные моменты времени. Под квантованием подразумевают преобразование некоторой величины с непрерывной шкалой значений в величину, имеющую дискретную шкалу значений. Оно сводится к замене любого мгновенного значения одним из конечного множества разрешенных значений, называемых уровнями квантования. Изменение вида сигнала u(t) (рис. 2.1, а) в результате проведения операции дискретизации показано на рис. 2.1, 6, а в результате совместного проведения операций дискретизации и квантования — на рис. 2.1, в. Число уровней квантования на рис. 2.1, в равно 8. Обычно их значительно больше. Передача такого множества различных по уровню импульсов даже на небольшие расстояния применяется крайне редко. Если провести нумерацию уровней, то их передача сведется к передаче чисел. Тогда, выразив эти числа в какой-либо системе счисления, можно обойтись меньшим множеством передаваемых сигналов. Как правило, дискретный сигнал преобразуется в последовательность чисел, выраженных в двоичном коде. Каждое дискретное значение сигнала представляется в этом случае последовательностью сигналов двух уровней. Наличие или отсутствие импульса на определенном месте интерпретируется единицей или нулем в соответствующем разряде двоичного числа.
Причины перехода к дискретному и цифровому выражению информации заключаются в следующем. Для конкретных задач управления или исследования интересующего нас объекта обычно требуется значительно меньше информации, чем ее поступает с датчиков в виде сигналов, изменяющихся во времени непрерывно. Учет априорных сведений об этих сигналах и целях их получения позволяет ограничиться отсчетами, взятыми через определенные моменты времени. При неизбежных флуктуациях во времени интересующих нас параметров и конечной погрешности средств измерения информация о величине сигнала в каждый момент отсчета всегда ограничена, что и выражается в конечном числе уровней квантования. Кроме того, специфика решаемых в системе задач часто такова, что целесообразно ограничиться значительно меньшим числом уровней, чем следует из указанных выше ограничений. Во многих случаях информация извлекается и передается с целью дальнейшей обработки средствами цифровой техники, в первую очередь ЭВМ и микропроцессорами. Рациональное выполнение операций дискретизации и квантования при этом приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации, что ведет к улучшению качества управления. При передаче и обработке информации в цифровой технике существует принципиальная возможность снижения вероятности получения ошибочного результата до весьма малых значений. Она возникает потому, что при использовании дискретных сигналов, во-первых, применимы такие методы кодирования, которые обеспечивают обнаружение и исправление ошибок (они изложены в гл. 6), а во-вторых, можно избежать свойственного аналоговым сигналам эффекта накопления искажений в процессе их передачи и обработки, поскольку квантованный сигнал легко восстановить до первоначального уровня всякий раз, когда величина накопленных искажений приблизится к половине кванта. Практическая реализация указанных методов наиболее эффективна при минимальном числе уровней, равном двум. Выражение информации в цифровой форме облегчает унификацию операций ее преобразования на всех этапах обращения. Массовость изготовления типовых узлов и блоков, простота их настройки, отсутствие необходимости регулировки в процессе эксплуатации позволяют, в свою очередь, улучшить такие важнейшие технико-экономические показатели средств цифровой техники, как стоимость изготовления и эксплуатации, а также надежность. Низкая стоимость и высокая надежность больших интегральных схем, естественно, являются мощными стимулами дальнейшего расширения областей использования цифровых сигналов. В данной главе мы ограничимся рассмотрением методов преобразования непрерывных сигналов в дискретные. Вопросы выражения дискретных сигналов в цифровой форме изложены в гл. 5. § 2.2. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ДИСКРЕТИЗАЦИИ
В самом общем случае представление непрерывного сигнала u(t) на интервале Т совокупностью координат (с1, с2,..., cN) может быть записано в виде где А — оператор дискретного представления сигнала, реализуемый устройством, называемым дискретизатором. Аналогично можно записать и операцию восстановления по совокупности координат (с1, c2, ..., cN) непрерывной функции u*(t) (воспроизводящей функции), отображающей исходный сигнал с некоторой текущей погрешностью приближения d(t) = u(t) — u*(t): где В — оператор восстановления, реализуемый устройством восстановления сигнала. Задача дискретизации в математическом плане сводится к совместному выбору пары операторов A и B, обеспечивающих заданную точность восстановления сигнала. Рассмотрим разновидности используемых операторов A и B и критериев оценки точности восстановления сигнала. Широкое практическое применение нашли линейные операторы, поскольку их техническая реализация проще. Для определения координат сигнала используется соотношение где {ξ j(t)}
|