Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Соединение обмоток эл. машин в треугольник.






При соединении фазных обмоток источника трехфазного тока «треугольником» (рис. 211, а) конец первой фазы АВ соединяется с началом второй фазы ВС, конец второй фазы соединяется с началом третьей фазы СА и конец третьей фазы — с началом первой АВ. Три линейных провода 1, 2 и 3, идущих к приемникам электрической энергии, присоединяются к началам А, В и С этих фаз. Точно так же могут соединяться и отдельные группы приемников ZAB, ZBC, ZCA (фазы нагрузки). При этом каждая фаза нагрузки присоединяется к двум линейным проводам, идущим от источника, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением. Таким образом, в схеме «треугольник» фазные напряжения Uф равны линейным Uл и не зависят от сопротивлений ZAB, ZBC, ZCA фаз нагрузки.

Как следует из формулы (77), при соединении «треугольником» трех фазных обмоток генератора или другого источника переменного тока сумма э. д. с, действующая в замкнутом контуре, образованном этими обмотками, равна нулю. Поэтому в этом контуре при отсутствии нагрузки не возникает тока. Но каждая из фазных э. д. с. может создавать ток в цепи своей фазы.
Линейные токи в схеме «треугольник» согласно первому закону Кирхгофа для узлов А, В и С соответственно:

iA = iAB – iCA; iB = iBC – iAB; iC = iCA – iBC

Переходя от мгновенных значений токов к их векторам, получим:

? A =? AB –? CA;? B =? BC –? AB;? C =? CA –? BC

Следовательно, линейный ток равен векторной разности соответствующих фазных токов.

По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму (рис. 211, б), которую можно преобразовать в диаграмму (рис. 211, в), из которой

Рис. 211. Схема «треугольник» (а) и векторные диаграммы токов для этой схемы при равномерной нагрузке (б и в)

видно, что при равномерной нагрузке фаз векторы линейных токов? А,? B,? C образуют равносторонний треугольник ABC, внутри которого расположена трехлучевая звезда векторов фазных токов? АВ,? BC и? СА. Отсюда по аналогии с диаграммой рис. 207, б следует, что

Iл = 2Iф cos 30° = 2Iф? 3 / 2 =? 3 Iф

т. е. при равномерной нагрузке фаз в схеме «треугольник» линейный ток больше фазного тока в? 3 раз.

Следовательно, при переключении приемников со «звезды» на «треугольник» фазные токи возрастают в? 3 раз, а линейные токи — в 3 раза. Возможность включения одних и тех же приемников по схеме «звезда» или «треугольник» расширяет область их применения. Например, если приемник рассчитан на фазное напряжение 220 В, то при соединении по схеме «треугольник» он может быть включен в сеть с линейным напряжением 220 В, а при соединении по схеме «звезда» — в сеть с линейным напряжением 220? 3 = 380 В. Приемники, рассчитанные на фазное напряжение127 В, могут работать в сетях с линейными напряжениями 127 и 127? 3= 220 В.

Особенности подвода трехфазного тока к приемникам. В трех-проводной трехфазной сети (при схемах «звезда без нулевого провода» и «треугольник») алгебраическая сумма мгновенных значений линейных токов в любой момент времени равна нулю, поэтому такие токи совместно не создают магнитного поля. Это позволяет прокладывать три линейных провода в одной общей металлической трубе или в кабеле с металлической оболочкой без опасности образования вихревых токов. Не допускается прокладка линейных проводов по отдельности в металлических трубах, так как возникающие вихревые токи вызывали бы сильный нагрев металла. То же самое происходило бы при прокладке в кабеле с металлической оболочкой или в трубе трех линейных проводов при схеме «звезда с нулевым проводом», так как сумма токов в них не равна нулю.

18.Активная, реактивная, полная мощность 3х фазного тока.

Рр=Ки*Рн*Кр

Q=Рн*Ки*tgφ

Sp=√ (Pp2+Q2)

19.Соединение обмоток эл.машин «∆». Линейные и фазные токи и напряжения.

При соединении фазных обмоток источника трехфазного тока «треугольником» (рис. 211, а) конец первой фазы АВ соединяется с началом второй фазы ВС, конец второй фазы соединяется с началом третьей фазы СА и конец третьей фазы — с началом первой АВ. Три линейных провода 1, 2 и 3, идущих к приемникам электрической энергии, присоединяются к началам А, В и С этих фаз. Точно так же могут соединяться и отдельные группы приемников ZAB, ZBC, ZCA (фазы нагрузки). При этом каждая фаза нагрузки присоединяется к двум линейным проводам, идущим от источника, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением. Таким образом, в схеме «треугольник» фазные напряжения Uф равны линейным Uл и не зависят от сопротивлений ZAB, ZBC, ZCA фаз нагрузки.

Как следует из формулы (77), при соединении «треугольником» трех фазных обмоток генератора или другого источника переменного тока сумма э. д. с, действующая в замкнутом контуре, образованном этими обмотками, равна нулю. Поэтому в этом контуре при отсутствии нагрузки не возникает тока. Но каждая из фазных э. д. с. может создавать ток в цепи своей фазы.
Линейные токи в схеме «треугольник» согласно первому закону Кирхгофа для узлов А, В и С соответственно:

iA= iAB– iCA; iB= iBC– iAB; iC= iCA– iBC

Переходя от мгновенных значений токов к их векторам, получим:

? A=? AB–? CA;? B=? BC–? AB;? C=? CA–? BC

Следовательно, линейный ток равен векторной разности соответствующих фазных токов.

По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму (рис. 211, б), которую можно преобразовать в диаграмму (рис. 211, в), из которой

Рис. 211. Схема «треугольник» (а) и векторные диаграммы токов для этой схемы при равномерной нагрузке (б и в)

видно, что при равномерной нагрузке фаз векторы линейных токов? А,? B,? C образуют равносторонний треугольник ABC, внутри которого расположена трехлучевая звезда векторов фазных токов? АВ,? BC и? СА. Отсюда по аналогии с диаграммой рис. 207, б следует, что

Iл = 2Iф cos 30° = 2Iф? 3 / 2 =? 3 Iф

т. е. при равномерной нагрузке фаз в схеме «треугольник» линейный ток больше фазного тока в? 3 раз.

Следовательно, при переключении приемников со «звезды» на «треугольник» фазные токи возрастают в? 3 раз, а линейные токи — в 3 раза. Возможность включения одних и тех же приемников по схеме «звезда» или «треугольник» расширяет область их применения. Например, если приемник рассчитан на фазное напряжение 220 В, то при соединении по схеме «треугольник» он может быть включен в сеть с линейным напряжением 220 В, а при соединении по схеме «звезда» — в сеть с линейным напряжением 220? 3 = 380 В. Приемники, рассчитанные на фазное напряжение127 В, могут работать в сетях с линейными напряжениями 127 и 127? 3= 220 В.

Особенности подвода трехфазного тока к приемникам. В трех-проводной трехфазной сети (при схемах «звезда без нулевого провода» и «треугольник») алгебраическая сумма мгновенных значений линейных токов в любой момент времени равна нулю, поэтому такие токи совместно не создают магнитного поля. Это позволяет прокладывать три линейных провода в одной общей металлической трубе или в кабеле с металлической оболочкой без опасности образования вихревых токов. Не допускается прокладка линейных проводов по отдельности в металлических трубах, так как возникающие вихревые токи вызывали бы сильный нагрев металла. То же самое происходило бы при прокладке в кабеле с металлической оболочкой или в трубе трех линейных проводов при схеме «звезда с нулевым проводом», так как сумма токов в них не равна нулю.


 

20.Устройство силового трансформатора. Коэффициент трансформации.

Силовой трансформатор — стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии без изменения её передаваемой мощности.

Силовые трансформаторы (автотрансформаторы) в зависимости от мощности и напряжения условно делят на восемь габаритов. Так, например, к нулевому габариту относят трансформаторы мощностью до 5 кВ-А включительно, мощностью свыше 5 кВ-А — до 100 кВ-А напряжением до 35 кВ (включительно) к I габариту, выше 100 до 1000 — ко II, выше 1000 до 6300 — к III; выше 6300 — к IV, а напряжением выше 35 до 110 кВ (включительно) и мощностью до 32 000 кВ-А — к V габариту. Для отличия по конструктивным признакам, назначению, мощности и напряжению их подразделяют на типы.
Каждому типу трансформаторов присваивают обозначение, состоящее из букв и цифр. Буквы в типах масляных и сухих трансформаторов обозначают: О — однофазный, Т — трехфазный, Н — регулирование напряжения под нагрузкой, Р — с расщепленными обмотками; по видам охлаждения: С — естественно-воздушное, М — естественная циркуляция воздуха и масла, Д — принудительная циркуляция воздуха и естественная циркуляция масла, ДЦ — принудительная циркуляция воздуха и масла, MB — принудительная циркуляция воды и естественная циркуляция масла, Ц— принудительная циркуляция воды и масла. Вторичное употребление буква С в обозначении типа показывает, что трансформатор трехобмоточный.

Рис. 1. Устройство силового масляного трансформатора мощностью 1000—6300 кВ-А класса напряжения 35 кВ:
1 — бак, 2 — вентиль, 3 — болт заземления, 4 — термосифонный фильтр, 5 — радиатор, 6 — переключатель, 7 — расширитель, 8 — маслоуказатель, 9—воздухоосушитель, 10 — выхлопная труба, 11 — газовое реле, 12 — ввод ВН, 13 — привод переключающего устройства, 14 — ввод НН, 15 — подъемный рым, 16 — отвод НН, 17 — остов, 18 — отвод ВН, 19 — ярмовая балка остова (верхняя и нижняя), 20 — регулировочные ответвления обмоток ВН, 21 — обмотка ВН (внутри НН), 22 — каток тележки

Цифры в числителе указывают мощность трансформатора (в киловольт-амперах), в знаменателе — класс напряжения обмотки ВН (в киловольтах), например: ТМ-100/6 — трехфазный, с масляным охлаждением и естественной циркуляцией, мощностью 100 кВ-А, напряжением 6 кВ; ТД-10000/110 — трехфазный, с дутьевым охлаждением, мощностью 10 000 кВ-А, напряжением 110 кВ; ТДТ-20 000/110 — трехфазный, трехобмоточный, с дутьевым охлаждением, мощностью 20 000 кВ-А, напряжением 110 кВ; ТС-630/10 — трехфазный, сухого исполнения, мощностью 630 кВ-А, напряжением 10 кВ.
В обозначении автотрансформатора добавляют букву А. Если автотрансформатор понижающий, то буква А стоит в начале обозначения, если повышающий — в конце.
В условном обозначении типа трансформатора указывают также год разработку конструкции, климатическое исполнение и категорию размещения, например: ТДЦ-63 000/110-75У1 (У — предназначен для работы в условиях умеренного климата, 1 — на открытом воздухе).
По стандарту номинальные мощности трехфазных трансформаторов и автотрансформаторов должны соответствовать ряду: 5; 6, 3; 8; 10; 12, 5; 16; 20; 25; 31, 5; 40; 50; 63; 80; 100; 125; 160; 200; 250 и т. д.
Составными частями масляного трансформатора являются: остов обмотки, переключающее устройство, вводы, отводы, изоляция, бак, охладители, защитные и контрольно-измерительные и вспомогательные устройства.
Конструкция, включающая в собранном виде остов трансформатора, обмотки с их изоляцией, отводы, части регулирующего устройства, а также все детали, служащие для их механического соединения, называется активной частью трансформатора. На рис. 1 показано устройство и компоновка основных частей силового масляного трансформатора мощностью 1000— 6300 кВ-А.

Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, тока, сопротивления и т. д.).


21.Опыт ХХ, опыт КЗ.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал