Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теория подобия






При использовании теории подобия необходимо иметь дифференциальное уравнение, описывающее исследуемый процесс. Проводя критериальную обработку этого уравнения, получают состав критериев подобия. Выявление состава критериев подобия осуществляется методом «губки»: в исходном дифференциальном уравнении опускаются знаки дифференциалов, полученные результаты приравниваются, выделяются независимые слагаемые, на основании которых определяются параметры подобия.

Для конвективного теплобмена (его математического описания) необходимо иметь: 1) дифференциальное уравнение движения вязкой несжимаемой жидкости — уравнение Навье — Стокса; 2) уравнение теплопроводности — Фурье — Кирхгофа; 3) уравнение теплообмена на границе твердая поверхность — окружающая среда — Био —Фурье.

Уравнение движения вязкой несжимаемой жидкости:

(а)

Получаем на основании теории подобия с использованием метода «губки» 5 независимых комплексов (уравнение написано для одномерного потока по оси «Х»).

№ п/п          
комплексы

 

Группируем полученные независимые комплексы и получаем критерии подобия:

делим 2: 1 ; (4.52)

2: 5 ; (4.53)

4: 2 ; (4.54)

3: 2 , (4.55)

где Но — критерий гомохронности — гидродинамический критерий одновременности событий;

Re — критерий Рейнольдса — параметр гидродинамического подобия режимов движения жидкости, характеризует соотношение сил инерции и сил вязкости;

Eu — критерий Эйлера — характеризует соотношение сил инерции и сил давления;

Fr — критерий Фруда — характеризует соотношение сил инерции и сил тяжести.

Следует отметить, что полученный основной состав критериев подобия Но, Re, Eu, Fr характеризует режим движения потока и может быть преобразован в любой иной состав критериев подобия умножением или делением исходного состава, но при этом в любом случае должно выполняться условие по возврату любого иного состава критериев подобия к исходному.

Так, вместо критерия Фруда можно использовать критерий Галилея:

(4.56)

или

, если , то (4.57)

(4.58)

Умножая критерий Ga на относительное изменение плотности (ρ – ρ 00), получим критерий Архимеда. Если ρ – ρ 00 = β Δ Т происходит за счет разности температур Δ Т = Т1 – Т2, то получим критерий Грасгофа. Критерий Ar характеризует величину подъемной силы при изучении свободной конвекции жидкости, в которой находятся пузырьки, твердые частицы или капли другой жидкости. Критерий Ga используется вместо критерия Fr, т. к. в него входит скорость потока, которую трудно измерить.

Кроме того, оказывается, что часть критериев является зависимой — функцией других критериев. Так, критерий Eu зависит от Re, что получается из рассмотрения уравнения Дарси — Вейсбаха:

, (4.59)

откуда

, (4.60)

с другой стороны

. (4.61)

Вторым уравнением, описывающим процесс конвективного теплообмена при вынужденном движении, является уравнение теплопроводности

(б)

Применяя метод «губки», получим три независимых комплекса:

делим 2: 3 ; (4.62)

3: 1 . (4.63)

№ п/п      
комплексы

 

Получаем критерии Пекле Pe и Фурье Fо. Критерий Pe характеризует соотношение тепловых потоков, переносимых конвекцией и теплопроводностью. Вместо критерия Pe можно использовать критерий Прандтля, т. к.

. (4.64)

Критерий Fо характеризует одновременность событий, так называемое безразмерное время. Из третьего уравнения теплообмена на границе твердая поверхность — окружающая среда получим критерий теплового подобия — критерий Нуссельта Nu:

(в)

№ п/п    
комплексы

 

делим 2: 1 . (4.65)

Таким образом, проведя критериальную обработку дифференциальных уравнений, получим состав критериев подобия:

Nu=¦(Ho, Fo, Re, Pe, Gr)=¦1(Ho, Fo, Re, Pe, Gr). (4.66)

Связь между критериями определяется опытным путем. Следует заметить, что теории размерностей и подобия могут использоваться при изучении любых процессов (гидравлических, механических, экономических).

В табл. 4.2 приводятся критерии тепловых и гидродинамических процессов.


Таблица 4.2

Главнейшие безразмерные критерии тепловых и гидродинамических процессов

Формула Название критерия Величины, входящие в критерий Значение критерия
Критерий Рейнольдса (критерий режима движения) w - скорость потока, м/сек; d - эквивалентный диаметр канала; n - коэффициент кинематической вязкости, м2/сек. Характеризует гидродинамический режим движения
Критерий Эйлера (критерий падения давления) DР - перепад давления, Н/м2; r - плотность жидкости, кг/м3. Характеризует безразмерную величину падения давления
Критерий Прандтля (критерий физических свойств жидкости)   Характеризует физические свойства жидкости и способность распространения тепла в жидкости
Критерий Пекле   Является мерой отношения молекулярного и конвективного переноса тепла в потоке
Критерий Нуссельта (критерий теплоотдачи) a - коэффициент конвективной теплоотдачи, Вт/(м2× град) Характеризует отношение между интенсивностью теплоотдачи и температурным полем в пограничном слое потока
Критерий Био l - характерный размер тела, м; lм - коэффициент теплопроводности твердого тела, Вт/(м× град) Характеризует соотношение между внутренним и внешним термическим сопротивлениями
Критерий Фурье (безразмерное время) t - время, сек Характеризует связь между скоростью изменения температурного поля, физическими константами и размерами тела
Критерий Грасгофа (критерий подъемной силы) b - коэффициент объемного расширения, 1/град; Dt - разность температур в двух точках системы потока и стенки, град Характеризует кинематическое подобие при свободном движении жидкости

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал