Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 3.1 Источники, передача и распределение электрической энергии.
Электрическая энергия универсальна: она удобна для дальних передач, легко распределяется по отдельным потребителям и с помощью сравнительно несложных устройств преобразуется в другие виды энергии. Эти задачи решает энергетическая система, в которой осуществляются преобразование энергии топлива или падающей воды в электрическую энергию, трансформация токов и напряжений, распределение и передача электрической энергии потребителям. Источниками электрической энергии служат тепловые (ТЭС), гидравлические (ГЭС) и атомные (АЭС) электростанции, имеющие общий режим производства энергии. Линии электропередачи, трансформаторные и распределительные устройства обеспечивают совместную работу электростанций и распределение энергии между потребителями. Рис. 11.1. Общая схема электроснабжения Рис. 11.2. Передвижная дизельная электростанция с синхронным генератором: I - возбудитель постоянного тока; 2 - генератор; 3 - дизельный двигатель Передача и распределение электроэнергии строится по ступенчатому принципу (рис. 11.1). Для уменьшения потерь в линиях электропередач (ЛЭГТ) напряжение повышают при помощи повышающих (ГГТП-1) и понижающих (ГПП-2) трансформаторов, устанавливаемых на электрических подстанциях. От крупных подстанций электроэнергия подается непосредственно к объектам, на которых на трансформаторных подстанциях (ТП) производится окончательное понижение напряжения. Распределение электроэнергии в электрических сетях производится, как правило, трехфазным переменным током частотой 50 Гц. В начальный период строительства в удаленных районах применяют в качестве временных источников. Потребители электроэнергии. Приемником электроэнергии (электроприемником) является электрическая часть технологической установки или механизма, получающая энергию из сети и расходующая ее на выполнение технологических процессов. Потребляя электроэнергию из сети, электроприемник, по существу, преобразует ее в другие виды энергии: механическую, тепловую, световую или в электроэнергию с иными параметрами (по роду тока, напряжению, частоте). Некоторые технологические установки имеют несколько электроприемников: станки, краны, и т.п. Электроприемники классифицируются по следующим признакам: напряжению, роду силы тока, его частоте, единичной мощности, степени надежности электроснабжения, режиму работы, технологическому назначению. По напряжению электроприемники подразделяются на две группы: до 1000 В и свыше 1000 В. Породу силы тока электроприемники подразделяются: на приемники переменного тока промышленной частоты (50 Гц), постоянного тока и переменного тока частотой, отличной от 50 Гц (повышенной или пониженной). Единичные мощности отдельных электроприемников и электропотребителей различны - от десятых долей киловатта до нескольких десятков мегаватт. По степени надежности электроснабжения правила устройства электроустановок (ПУЭ) предусматривают три категории: 1 Электроприемники I категории - электроприемники, перерыв снабжения которых электроэнергией связан с опасностью для людей или влечет за собой большой материальный ущерб (доменные цехи, котельные производственного пара, подъемные и вентиляционные установки шахт, аварийное освещение и др.). Они должны работать непрерывно. 2 Электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простою технологических механизмов, рабочих, промышленного транспорта, нарушению нормальной деятельности городских и сельских жителей. 3 Электроприемники III категории - все остальные электроприемники, не подходящие под определение I и II категорий. Электроприемники данной категории допускают перерыв электроснабжения не более одних суток. Характеристики электроприемников. К общепромышленным установкам относятся вентиляторы, насосы, компрессоры, воздуходувки и т. п. Данная группа электроприемников относится, как правило, к первой категории надежности. Некоторые вентиляционные и компрессорные станции относятся ко второй категории надежности. Регулируемый электропривод технологических механизмов и двигатели станков с повышенной скоростью вращения получают питание от преобразовательных установок. Режимы их работы различны и определяются режимом механизма. Преобразователями тока служат двигатели-генераторы, ртутные и полупроводниковые выпрямители, питающиеся от трехфазных сетей переменного тока промышленной частоты на напряжениях до 110 кВ. К электротехнологическим установкам относятся электронагревательные и электролизные установки, установки электрохимической, электроискровой и ультразвуковой обработки металлов, электромагнитные установки (сепараторы, муфты), электросварочное оборудование. Электронагревательные установки объединяют электрические печи и электротермические установки. Электросварочное оборудование питается напряжением 380 или 220 В переменного тока промышленной частоты. Электросварочное оборудование работает в повторно-кратковременном режиме. Сварочные установки по степени надежности относятся ко второй категории. Мощность электроприводов подъемно-транспортных устройств определяется условиями производства, ее значение колеблется от нескольких до сотен киловатт. Электрические осветительные установки являются в основном однофазными приемниками. Электроосвети -тельные установки относятся ко второй категории надежности.
Схемы электрических сетей. Схема силовой сети определяется технологическим процессом производства, категорией надежности электроснабжения, взаимным расположением ТП или ввода питания и электроприемников, их единичной установленной мощностью и размещением. Схема должна быть проста, безопасна и удобна в эксплуатации, экономична, должна удовлетворять характеристике окружающей среды, обеспечивать применение индустриальных методов монтажа. Схемы сетей могут быть радиальными, магистральными и смешанными — с односторонним или двусторонним питанием. При радиальной схеме (рис. 11.3) энергия от отдельного узла питания (ТП) поступает к одному достаточно мощному потребителю или к группе электроприемников. Рис. 11.3. Радиальная схема питания: 1— распределительный щит; 2 — силовой распределительный пункт (РП); 3 — электроприемник; 4 — щит освещения; 5 — кабельная линия
Радиальные схемы применяют для питания сосредоточенных нагрузок большой мощности, при неравномерном размещении приемников, а также для питания приемников во взрывоопасных, пожароопасных и пыльных помещениях. Достоинства радиальных схем заключаются в высокой надежности (авария на одной линии не влияет на работу приемников, получающих питание по другой линии) и удобстве автоматизации. Недостатками радиальных схем являются: малая экономичность из-за значительного расхода проводникового материала. При магистральных схемах приемники подключаются к любой точке линии (магистрали). Магистрали могут присоединяться к распределительным щитам подстанции или к силовым РП (рис. 11.4): Рис. 11.4. Магистральная схема с распределительным шинопроводом: 1- комплектная трансформаторная подстанция (КТП); 2 - распределительный шинопровод; 3- нагрузка
Достоинствами магистральных схем являются: упрощение щитов подстанции; высокая гибкость сети, дающая возможность перемещать технологическое оборудование без переделки сети; использование унифицированных элементов, позволяющих вести монтаж индустриальными методами. Для повышения надежности питания электроприемников по магистральным схемам применяется двустороннее питание магистральной линии (рис. 11.5): Рис. 11.5. Схема с двусторонним питанием магистралей Схемы сетей электрического освещения. Система рабочего освещения создает нормальное освещение всего помещения и рабочих поверхностей. В такую систему входят светильники общего и местного освещения. Аварийное освещение обеспечивает освещенность для продолжения работы или останова технологического процесса и для эвакуации людей при отключении рабочего освещения. Групповые линии в зависимости от протяженности и нагрузки могут быть двух-, трех- и четырехпроводными. Групповые линии одного помещения должны получать питание так, чтобы при погасании части ламп одних групп оставшиеся в работе группы обеспечивали минимальную освещенность до ликвидации аварии. Пример схемы питания осветительной сети приведен на рис. 11.6.
Рис. 11.6. Схема питания электроосвещения от двух ТП: 1— распределительный щит; 2 — линии, отходящие к силовым РП; 3, 4 — групповые щитки соответственно рабочего и аварийного освещения; 5, б — групповая сеть соответственно рабочего и аварийного освещения; 7— питающие линии освещения
Расчет электрических нагрузок. Основой рационального решения комплекса технико-экономических вопросов электроснабжения является правильное определение ожидаемых электрических нагрузок. От этого зависят капитальные затраты в схеме электроснабжения, расход цветного металла, потери электроэнергии и эксплуатационные расходы. Исходными данными для расчета электрических нагрузок являются установленная мощность электроприемников и характер изменения нагрузки. Под установленной мощностью (Ру) групп потребителей понимают суммарную паспортную мощность всех электроприемников. Например, установленная мощность башенного крана равна сумме номинальных мощностей всех его электродвигателей. В результате расчета определяется максимальная (расчетная) нагрузка, которая служит основой для выбора сечения токоведущих частей, потерь мощности и напряжения в сетях, выбора мощности трансформаторов и компенсирующих устройств. Для каждой группы электроприемников существует некоторое определенное соотношение между величинами расчетной (Рр) и установленной мощности. Это соотношение называется коэффициентом спроса: (11.1) Зная установленную мощность и коэффициент спроса данной группы потребителей, можно определить расчетную мощность: (11.2) Расчетную реактивную мощность (Qp) определяют по формуле: (11.3) где tg φ находят для угла φ, косинус которого определяют из паспортных данных установки. Полная расчетная мощность силовой нагрузки определяется как: (11.4) К расчетной силовой нагрузке необходимо прибавить мощность на освещение. Расчеты удобно вести в табличной форме (таб. 11.1):
Таблица 11.1 Для снижения потерь электроэнергии надо использовать более высокие напряжения, стремиться к сокращению протяженности сетей до 1000 В, применять меры по повышению коэффициента мощности. На значении коэффициента мощности электроустановки отрицательно сказывается наличие малозагруженных электродвигателей и трансформаторов. Поэтому в первую очередь проводятся мероприятия организационного порядка, направленные на то, чтобы естественный коэффициент мощности достиг максимального значения. Если этих мер недостаточно, то применяют батареи конденсаторов, синхронные двигатели. Методика расчет величины и места расположения конденсаторов сложна, но в приближенных расчетах значение емкости (квар) определяют по формуле (11.6) где Qc – емкость конденсаторной батареи; Pp – расчетная активная мощность нагрузки, кВАр; tg φ р – расчетный тангенс. По каталожным данным выбирают ближайший стандартный конденсатор. Устанавливают батареи конденсаторов или на подстанции, или непосредственно у потребителя. Трансформаторные подстанции. Трансформаторные подстанции служат для приема электроэнергии, преобразования напряжения и распределения электрической энергии на объекте. По назначению различают следующие виды трансформаторных подстанций:
главные (повышающие и понижающие) подстанции, предназначенные для повышения напряжения линии электропередач при больших расстояниях; распределительные, или просто трансформаторные подстанции (ТП), в которых электроэнергия, поступающая от ГПП, трансформируется с высшего напряжения 35...6 кВ на низшее 660/380 или 380/220 В, на которое и рассчитано большинство потребителей. Оборудование ТП состоит из трансформаторов, аппаратов коммутации и защиты, устройств управления, контроля и учета электроэнергии. Схема ТП типа строительной комплектной трансформаторной подстанции с одним трансформатором показана на рис. 11.7:
Рис. 11.7. Мачтовая открытая подстанция (а) и схема ТП с одним трансформатором (б): 1 - трансформатор; 2 - разъединитель; 3 - предохранитель; 4 - распределительный шкаф; 5 - разрядник
По конструктивному выполнению различают открытые, закрытые, передвижные подстанции. К открытым, оборудование которых устанавливается на открытом воздухе, относятся мачтовые подстанции с трансформаторами, установленными на деревянных или железобетонных опорах. На рис. 11.7 изображена подстанция с одним трансформатором, присоединенным к ЛЭП. Закрытые ТП (рис. 11.8) располагаются в помещениях К закрытым трансформаторным подстанциям относятся также комплектные подстанции КТП или СКТП (строительные комплектные трансформаторные подстанции). Электрооборудование КТП размещается в металлическом корпусе.
Рис. 11.8. Закрытая трансформаторная подстанция: 1 — трансформатор; 2 — контакт замыкающий; 3 — предохранитель
Передвижные подстанции (рис. 11.9), которые также могут быть комплектными, монтируются на авто- или железнодорожной платформе. Рис.11.9. Передвижная комплектная трансформаторная подстанция Технические характеристики силовых трансформаторов. Основным конструктивным типом силового трансформатора напряжением до 10 кВ является трехфазный трансформатор с естественным масляным охлаждением. Используются и сухие силовые трансформаторы (т. е. с воздушным охлаждением). Они безопасны в отношении пожара и поэтому ими комплектуются ТП в зданиях с повышенными требованиями пожарной безопасности. Промышленность выпускает трехфазные силовые трансформаторы по определенной шкале мощностей: 10; 16; 25; 40; 63; 100; 250; 400; 630; 1000; 1600 кВА. Определение типа и мощности силового трансформатора. Выбор типа, мощности ТП, ее расположение обуславливается величиной, характером электрических нагрузок и их пространственным расположением. Расчет ведется в такой последовательности: определяется местоположение ТП с учетом положения опасных зон, расположения подъездных путей и дорог. Трансформаторные подстанции желательно располагать ближе к мощным потребителям; при определении мощности трансформатора необходимо одновременно решать вопрос о компенсации реактивной мощности. При компенсации на стороне 0, 4 кВ получается расчетная мощность трансформатора: (11.7) где Рр - расчетная активная мощность нагрузки, кВт; Qр - расчетная реактивная мощность нагрузки, квар; QЭ - реактивная мощность энергосистемы (как правило, QЭ = 0, 33 Рр); В - коэффициент загрузки трансформатора (для однотрансформаторной подстанции В = 0, 95... 1, 0).
Из справочных данных выбирают ближайший трансформатор равной или большей мощности.
Электрические станции. Электрическая энергия вырабатывается на электростанциях. Различные виды природной энергии (топливо, атомная, падающей воды, ветра, морских приливов и отливов и т. д.) преобразуются на этих станциях в электрическую. Для работы электрических генераторов используют паровые поршневые машины и турбины, двигатели внутреннего сгорания, газовые и гидравлические турбины, ветряные двигатели и др. В зависимости от вида энергии, потребляемой первичными двигателями, электростанции бывают тепловыеу включая и атомные, гидравлические, ветряные. Некоторое значение для горных и южных районов имеют гелиостанции (солнечные установки). Однако мощность их пока незначительна, поэтому они имеют лишь местное значение и ограниченное применение. Городские станции обеспечивают потребителей не только электроэнергией, но и теплотой и называются теплоэлектроцентралями (ТЭЦ). Постепенное сокращение топливных ресурсов требуют поисков новых способов получения электроэнергии. Одним из наиболее перспективных является получение электроэнергии с помощью термоядерного синтеза. В этом направлении ведутся исследовательские работы во всем мире. Следует отметить, что к.п.д. даже крупных тепловых электростанций не превышает 40-42%. Эффективным способом повышения к.п.д. тепловых электростанций является применение так называемых магнитогидродинамически х генераторов (МГД- генераторов).
Понятие об электрических системах. Передачу электрической энергии на большие расстояния выгодно осуществлять при высоких напряжениях. Поэтому при электростанциях сооружаются трансформаторные подстанции, на которых напряжение генераторов повышается до 35, 110, 220 кВ и более. При очень больших расстояниях, порядка нескольких тысяч километров, передача энергии может осуществляться на постоянном токе высокого напряжения, что позволяет уменьшить потери энергии в линиях электропередачи (ЛЭП). В местах потребления постоянный ток вновь преобразуется в переменный на специальных преобразовательных подстанциях. От сборных шин распределительного устройства подстанции (РУ) по линиям электропередачи энергия передается на районные понизительные подстанции с вторичным номинальным напряжением 6-10 кВ. От районных понизительных подстанций электрическая энергия передается обычно по кабельным линиям на городские распределительные пункты (РП), от которых распределяется между понизительными подстанциями, расположенными вблизи потребителей непосредственно в микрорайонах и жилых кварталах. Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей, связанных в одно целое общностью режима, непрерывностью процессов производства и распределения электрической и тепловой энергии, называется энергосистемой. В России имеется ряд крупных энергосистем, объединяющих большое количество электрических станций. Часть энергетической системы, состоящая из генераторов, распределительных устройств, повысительных и понизительных подстанций, линий электрических сетей и электроприемников, называется электрической системой. На рис. 11.10 приведена примерная схема электроснабжения крупного города: Длительно допустимая расчетная токовая нагрузка для заданных условий Iд ³ Imax /(ККп), (11.8) где Imax — расчетная длительная максимальная токовая нагрузка элемента сети, А, определяемая по формулам: а) для трехфазной четырехпроводной и трехпроводной сетей (11.9) б) для двухфазной сети с нулевым проводом , (11.10) в) для однофазной сети (11.11) где Рmах — расчетная максимальная нагрузка, кВт; Uном — номинальное линейное напряжение, В; UФ — номинальное фазное напряжение, В. Для сетей, питающих люминесцентные лампы, при определении расчетного тока Imах следует вводить повышающий коэффициент, учитывающий потери мощности в пускорегулирующих аппаратах (ПРА), равный 1, 25.
|