Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Логические устройства






Из логических элементов составляются схемы, называемые логическими устройствами, которые по принципу действия делятся на два класса: комбинационные и последовательностные. Типовые функциональные узлы этих устройств выпускаются в виде отдельных интегральных микросхем. В комбинационных устройствах выходные сигналы однозначно определяются действующей в настоящий момент на входе комбинацией логических переменных и не зависят от их значений, действовавших до этого момента. Выходные сигналы в последовательностных устройствах определяются не только действующей в настоящий момент комбинацией логических переменных, но и всей последовательностью переменных, действовавших на входе устройства в предшествующие моменты времени. В связи с этим устройства первого класса часто называют автоматами без памяти, а второго – автоматами с памятью или цифровыми автоматами. Очевидно, в последовательностных устройствах должны быть введены элементы, способные запоминать предшествующую информацию. Такую функцию в этих устройствах выполняют триггерные элементы.

К числу функциональных узлов последовательностных устройств, кроме триггеров, относятся счетчики импульсов, регистры. К числу комбинационных устройств относятся шифраторы, дешифраторы, преобразователи кодов, сумматоры, мультиплексоры и демультиплексоры. Все эти микросхемы будут рассмотрены ниже.

Выпускаемые промышленностью комбинационные ИМС не всегда могут быть использованы при решении конкретных логических задач. В этом случае приходится составлять устройства на базе логических элементов. При построении таких устройств обычно выполняются следующие этапы:

- составление таблицы состояний (аналоги таблиц истинности логических элементов);

- представление аналитического выражения логической функции, которая записывается либо в виде суммы произведений логических переменных, либо в виде произведений их суммы;

- минимизация (при необходимости) логической функции с целью определения минимального числа элементов схемы, при которой используется метод преобразования на базе формул алгебры логики, а при небольшом числе переменных – метод карт Карно.

В качестве примера ниже рассматривается построение комбинационного логического устройства для решения следующей задачи. Оно должно обеспечивать включение агрегата либо непосредственно у агрегата (x = 1), либо с пульта, отнесенного от него (y = 1), но при напряжении питания, превышающего определенную величину (z = 1). Величины x, y, z являются логическими переменными. Равенство функции F логической единице является условием включения агрегата. Вид этой функции следует из таблицы состояния 7.6, из которой видно, что из всех возможных комбинаций значений переменных x, y и z агрегат включается в трех случаях. Функция F может быть представлена как сумма трех слагаемых, соответствующих строкам 4, 6, 8. таблицы.

F = yz + x z + xyz. (7.13)

 

В формуле х, y и z соответствуют логической «1», а и - логическому «0» каждой из этих переменных.

Таблица 7.6

 

№ комбинации x y z F
         
         
         
         
         
         
         
         

 

Если следовать полученной формуле, искомая функция F может быть реализована шестью логическими элементами: двумя элементами “НЕ”, тремя трехвходовыми элементами “И” и одним трехвходовым элементом “ИЛИ”. Однако функцию F можно минимизировать с использованием тождеств и законов алгебры логики и тем самым можно сократить число используемых логических элементов. Действительно, последовательное применение тождества (7.1), переместительного и сочетательного законов, тождеств (7.2), (7.8) и, наконец, вновь сочетательного закона позволяет записать (см. раздел 7.1).

 

F = yz+ xyz + x z + xyz =

= yz ( + x) + xz ( + y) = (7.14)

= yz + xz = z (x + y).

 

В результате минимизации логической функции число используемых элементов сократится до двух: одного двухвходового элемента “И” и одного двухвходового элемента “ИЛИ”, что показано на рис.7.9.

Рисунок 7.9. Схема комбинационного устройства,

реализующая логическую функцию F = z (x + y)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал